Previous |  Up |  Next

Article

Keywords:
reaction-diffusion systems; variational inequalities; inclusions; bifurcation; stationary solutions; spatial patterns
Summary:
We consider a reaction-diffusion system of the activator-inhibitor type with boundary conditions given by inclusions. We show that there exists a bifurcation point at which stationary but spatially nonconstant solutions (spatial patterns) bifurcate from the branch of trivial solutions. This bifurcation point lies in the domain of stability of the trivial solution to the same system with Dirichlet and Neumann boundary conditions, where a bifurcation of this classical problem is excluded.
References:
[1] E. N. Dancer: On the structure of solutions of non-linear eigenvalue problem. Indiana Univ. Math. J. 23 (1974), 1069–1076. DOI 10.1512/iumj.1974.23.23087 | MR 0348567
[2] G. Duvaut, J. L. Lions: Les Inéquations en Mechanique et en Physique. Dunod, Paris, 1972. MR 0464857
[3] P. Drábek, M. Kučera, M. Míková: Bifurcation points of reaction-diffusion systems with unilateral conditions. Czech. Math. J. 35 (1985), 639–660. MR 0809047
[4] P. Drábek, M. Kučera: Reaction-diffusion systems: Destabilizing effect of unilateral conditions. Nonlinear Analysis, Theory, Methods, Applications 12 (1988), 1173-1192. MR 0969497
[5] J. Eisner: Reaction-diffusion systems: Destabilizing effect of conditions given by inclusions. (to appear). MR 1802290 | Zbl 0977.35020
[6] S. Fučík, A. Kufner: Nonlinear Differential Equations. Elsevier, Amsterdam, 1980. MR 0558764
[7] A. Gierer, H. Meinhardt: A theory of biological pattern formation. Kybernetik 12 (1972), 30–3. DOI 10.1007/BF00289234
[8] H. Kielhöfer: Stability and semilinear evolution equations in Hilbert space. Arch. Rat. Mech. Analysis 57 (1974), 150–165. DOI 10.1007/BF00248417 | MR 0442405
[9] M. Kučera: Bifurcation points of variational inequalities. Czechoslovak Math. J. 32 (1982), 208–226. MR 0654057
[10] M. Kučera: Reaction-diffusion systems: Stabilizing effect of conditions described by quasivariational inequalities. Czechoslovak Math. J. 47 (122) (1997), 469–486. DOI 10.1023/A:1022411501260 | MR 1461426
[11] M. Kučera: Bifurcation of solutions to reaction-diffusion system with conditions described by inequalities and inclusions. Proceedings of the Second World Congress of Nonlinear Analysts, Athens, 1996. MR 1602910
[12] M. Kučera, M. Bosák: Bifurcation for quasi-variational inequalities of reaction-diffusion type. SAACM 3 (1993), 111–127.
[13] M. Kučera: Bifurcation of solutions to reaction-diffusion systems with unilateral conditions. Navier-Stokes Equations and related Topics, by A. Sequeira (eds.), Plenum Press, New York, 1995, pp. 307–322. MR 1373224
[14] M. Kučera: Reaction-diffusion systems: Bifurcation and stabilizing effect of conditions given by inclusions. Nonlin. Anal., T.M.A. 27 (1996), 249–260. DOI 10.1016/0362-546X(95)00055-Z | MR 1391435
[15] M. Mimura, Y. Nishiura, M. Yamaguti: Some diffusive prey and predator systems and their bifurcation problems. Ann. N.Y. Acad. Sci. 316 (1979), 490–521. DOI 10.1111/j.1749-6632.1979.tb29492.x | MR 0556853
[16] J. D. Murray: Mathematical Biology 19. Springer-Verlag, 1993. MR 1239892
[17] Y. Nishiura: Global structure of bifurcating solutions of some reaction-diffusion systems. SIAM J. Math. Analysis 13 (1982), 555–593. DOI 10.1137/0513037 | MR 0661590 | Zbl 0505.76103
[18] L. Nirenberg: Topics in Nonlinear Functional Analysis. Academic Press, New York, 1974. MR 0488102 | Zbl 0286.47037
[19] P. Quittner: Spectral analysis of variational inequalities. Commentat. Math. Univ. Carol. 27 (1986), 605–629. MR 0873631
[20] P. Quittner: Bifurcation points and eigenvalues of inequalities of reaction-diffusion type. J. reine angew. Math. 380 (1987), 1–13. MR 0916198 | Zbl 0617.35053
[21] P. H. Rabinowitz: Some global results for nonlinear eigenvalue problems. J. Funct. Anal. 7 (1987), 487–513. DOI 10.1016/0022-1236(71)90030-9 | MR 0301587
[22] D. H. Sattinger: Topics in Stability and Bifurcation Theory. Lecture Notes in Mathematics 309, Springer-Verlag, Berlin-Heidelberg-New York, 1973. MR 0463624 | Zbl 0248.35003
[23] A. M. Turing: The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. (B) (1952), 37–72.
Partner of
EuDML logo