Previous |  Up |  Next

Article

Keywords:
nonlinear problem; existence of solutions; Galerkin method; compactness; pseudo-Laplacian; asymptotic behaviour; energy type estimates
Summary:
We prove existence and asymptotic behaviour of a weak solutions of a mixed problem for \begin{align*} &u^{\prime\prime} + Au - \Delta u^\prime + |v|^{\rho +2}\,|u|^\rho \,u = f_1\\ &v^{\prime\prime} + Av - \Delta v^\prime + |u|^{\rho +2}\,|v|^\rho \,v = f_2 \tag{*}\end{align*} where $A$ is the pseudo-Laplacian operator.
References:
[1] A. Biazutti: Sobre uma Equação não Linear de Vibrações. Existência de Soluções Fracas e Comportamento Assintótico. Tese de Doutorado – IMUFRJ.
[2] F.E. Browder, Bui An Ton.: Nonlinear functional equations in Banach spaces and elliptic super regularization. Math. Zeitsch. 105 (1968), 177–195. DOI 10.1007/BF01109897 | MR 0232256
[3] N.N. Castro: Sobre um Problema de Evolução não Linear. Tese de Doutorado, IMUFRJ, 1995.
[4] E. Coddington, N. Levinson: Theory of Ordinary Differential Equations. New York.
[5] J.L. Lions: Quelques Méthodes de Résolutions des Problèmes aux Limites Non Linéaires. Dunod Paris, 1969. MR 0259693
[6] M. Nakao: A difference inequality and its applications to nonlinear evolution equations. J. Math. Soc. Jap. (10)4 (1978), 747–762. DOI 10.2969/jmsj/03040747 | MR 0513082
[7] L.A. Medeiros, M.M. Miranda: Weak solutions for a system of nonlinear Klein-Gordon equations. Annali Di Matemática Pura ed Applicata IV (CXLVI), 173–183. MR 0916692
[8] M. Tsutsumi: Some nonlinear evolution equations of second order. Proc. Jap. Acad. 47 (1971), 950–955. DOI 10.3792/pja/1195526303 | MR 0312023 | Zbl 0258.35017
Partner of
EuDML logo