[1] E. G. Ladopoulos:
On the numerical solution of the finite-part singular integral equations of the first and the second kind used in fracture mechanics. Comp. Meth. Appl. Mech. Engng 65 (1987), 253–266.
DOI 10.1016/0045-7825(87)90159-9 |
MR 0919245
[2] E. G. Ladopoulos:
On a new integration rule with the Gegenbauer polynomials for singular integral equations, used in the theory of elasticity. Ing. Archiv 58 (1988), 35–46.
DOI 10.1007/BF00537198 |
Zbl 0627.73018
[3] E. G. Ladopoulos:
On the numerical evaluation of the general type of finite-part singular integrals and integral equations used in fracture mechanics. J. Engrg. Fract. Mech. 31 (1988), 315–337.
DOI 10.1016/0013-7944(88)90075-6
[4] E. G. Ladopoulos:
The general type of finite-part singular integrals and integral equations with logarithmic singularities used in fracture mechanics. Acta Mech. 75 (1988), 275–285.
DOI 10.1007/BF01174641 |
Zbl 0667.73072
[5] E. G. Ladopoulos:
On the solution of the two-dimensional problem of a plane crack of arbitrary shape in an anisotropic material. J. Engrg Fract. Mech. 28 (1987), 187–195.
DOI 10.1016/0013-7944(87)90212-8
[7] E. G. Ladopoulos:
Singular integral representation of three-dimensional plasticity fracture problem. Theor. Appl. Fract. Mech. 8 (1987), 205–211.
DOI 10.1016/0167-8442(87)90047-4
[8] E. G. Ladopoulos:
On the numerical solution of the multidimensional singular integrals and integral equations used in the theory of linear viscoelasticity. Internat. J. Math. Math. Scien. 11 (1988), 561–574.
DOI 10.1155/S0161171288000675 |
MR 0947288 |
Zbl 0665.65097
[9] E. G. Ladopoulos:
Relativistic elastic stress analysis for moving frames. Rev. Roum. Sci. Tech., Méc. Appl. 36 (1991), 195–209.
MR 1171626
[11] S. S. Antman:
Ordinary differential equations of nonlinear elasticity I: Foundations of the theories of nonlinearly elastic rods and shells. Arch. Ration. Mech. Anal. 61 (1976), 307–351.
DOI 10.1007/BF00250722 |
MR 0418580
[12] S. S. Antman: Ordinary differential equations of nonlinear elasticity II: Existence and regularity for conservative boundary value problems. Arch. Ration. Mech. Anal. 61 (1976), 352–393.
[14] J. M. Ball:
Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63 (1977), 337-403.
MR 0475169 |
Zbl 0368.73040
[16] J. M. Ball:
Remarques sur l’existence et la régularité des solutions d’elastostatique nonlinéaire, in: Recent Contributions to Nonlinear Partial Differential Equations. Pitman, Boston, 1981, pp. 50–62.
MR 0639745
[18] P. G. Ciarlet, P. Destuynder:
A justification of a nonlinear model in plate theory. Comp. Meth. Appl. Mech. Engng 17 (1979), 227–258.
MR 0533827
[19] P. G. Ciarlet, J. Nečas:
Injectivité presque partout, autocontact, et noninterpénétrabilité en élasticité non linéaire tridimensionnelle. C. R. Akad. Sci. Paris, Sér I 301 (1985), 621–624.
MR 0816644
[20] P. G. Ciarlet, J. Nečas:
Injectivity and self-contact in non-linear elasticity. Arch. Ration. Mech. Anal. 97 (1987), 171–188.
DOI 10.1007/BF00250807 |
MR 0862546
[22] C. M. Dafermos:
Development of singularities in the motion of materials with fading memory. Arch. Ration. Mech. Anal. 91 (1985), 193–205.
MR 0806001
[23] C. M. Dafermos, L. Hsiao:
Development of singularities in solutions of the equations of nonlinear thermoelasticity. Q. Appl. Math. 44 (1986), 463–474.
DOI 10.1090/qam/860899 |
MR 0860899
[25] Guo Zhong-Heng:
The unified theory of variational principles in nonlinear elasticity. Arch. Mech. 32 (1980), 577–596.
MR 0619303
[27] D. Hoff, J. Smoller:
Solutions in the large for certain nonlinear parabolic systems. Anal. Non Lin. 2 (1985), 213–235.
MR 0797271
[32] B. Neta:
Finite element approximation of a nonlinear parabolic problem. Comput. Math Appl. 4 (1987), 247–255.
MR 0518696
[36] M. Slemrod:
Global existence, uniqueness and asymptotic stability of classical smooth solutions in one-dimensional, nonlinear thermoelasticity. Arch. Ration. Mech. Anal. 76 (1981), 97–133.
DOI 10.1007/BF00251248 |
MR 0629700 |
Zbl 0481.73009
[39] I. Privalov: On a boundary problem in the theory of analytic functions. Math. Sb. 41 (1934), 519–526.
[40] S. Banach:
Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales. Fundam. Math. 3 (1922), 133–181.
DOI 10.4064/fm-3-1-133-181
[41] V. Cacciopoli: Un teorema generale sull’asistenza di elementi uniti in una transformazione functionale. Rend. Accad. Lincei 2 (1930).
[42] M. I. Zhykovskiy: Calculation of the Flow in Lattices of Profiles of Turbomachines. Mashgiz, Moscow, 1960. (Russian)
[43] N. I. Muskhelishvili:
Some Basic Problems of the Mathematical Theory of Elasticity. Noordhoff, Groningen, Netherlands, 1953.
MR 0058417 |
Zbl 0052.41402
[44] N. I. Muskhelishvili:
Singular Integral Equations. Noordhoff, Groningen, Netherlands, 1972.
MR 0355494
[45] V. V. Ivanov:
The Theory of Approximate Methods and their Application to the Numerical Solution of Singular Integral Equations. Noordhoff, Leyden, Netherlands, 1976.
MR 0405045 |
Zbl 0346.65065