Previous |  Up |  Next

Article

Keywords:
partial differential equations; homogenization; two-scale convergence; linear parabolic equations; oscillating coefficients in space and time variable; dissimilar speeds of oscillation; admissible test functions; corrector results; compactness result; interpolation; coefficients oscillating in space and time
Summary:
We extend and complete some quite recent results by Nguetseng [Ngu1] and Allaire [All3] concerning two-scale convergence. In particular, a compactness result for a certain class of parameterdependent functions is proved and applied to perform an alternative homogenization procedure for linear parabolic equations with coefficients oscillating in both their space and time variables. For different speeds of oscillation in the time variable, this results in three cases. Further, we prove some corrector-type results and benefit from some interpolation properties of Sobolev spaces to identify regularity assumptions strong enough for such results to hold.
References:
[Ada] R. A. Adams: Sobolev Spaces. Academic Press, New York. 1975. MR 0450957
[All1] G. Allaire: Two-scale convergence and homogenization of periodic structures. School on homogenization, ICTP, Trieste, September 6–17, 1993.
[All2] G. Allaire: Homogenization of the unsteady Stokes equation in porous media. Progress in pdes: calculus of variation, applications, Pitman Research notes in mathematics Series 267, C. Bandle et al. (eds.), Longman Higher Education, New York, 1992. MR 1194192
[All3] G. Allaire: Homogenization and two-scale convergence. SIAM Journal of Mathematical Analysis, 23 (1992), no. 6, 1482–1518. DOI 10.1137/0523084 | MR 1185639 | Zbl 0770.35005
[Alt] H. W. Alt: Lineare Funktionalanalysis. Springer-Verlag, 1985. Zbl 0577.46001
[Att] H. Attouch: Variational Convergence of Functions and Operators. Pitman Publishing Limited, 1984. MR 0773850
[Bens] A. Bensoussan, J. L. Lions, G. Papanicolau: Asymptotic Analysis for Periodic Structures. Studies in Mathematics and its Applications, North-Holland, 1978. MR 0503330
[BeLö] J. Bergh, J. Löfström: Interpolation Spaces. An Introduction. Grundlehren der mathematischen Wissenschaft, Springer-Verlag, 1976. MR 0482275
[BraOts] S. Brahim-Otsmane, G. Francfort, F. Murat: Correctors for the homogenization of the wave and heat equation. J. Math. Pures Appl 9 (1992). MR 1172450
[CoFo] P. Constantin, C. Foiaş: Navier-Stokes equations. The University of Chicago Press, Chicago, 1989. MR 0972259
[DM] G. Dal Maso: An introduction to $\Gamma $-convergence. Progress in Nonlinear Differential Equations and their Applications, Volume 8, Birkhäuser Boston. 1993. MR 1201152
[Defr] A. Defranceschi: An introduction to homogenization and G-convergence. School on homogenization, ICTP, Trieste, September 6–17, 1993.
[Edw] R. E. Edwards: Functional Analysis. Holt, Rinehart and Winston, New York, 1965. MR 0221256 | Zbl 0182.16101
[HolWel] A. Holmbom, N. Wellander: Some results for periodic and non-periodic two-scale convergence. Working paper No. 33 University of Gävle/Sandviken, 1996.
[Kuf] A. Kufner: Function Spaces. Nordhoff International, Leyden, 1977. MR 0541734 | Zbl 0364.46022
[LiMa] J. L. Lions, E. Magenes: Non Homogeneous Boundary Value problems and Applications II. Springer-Verlag, Berlin, 1972.
[Nand] A. K. Nandakumaran: Steady and evolution Stokes equations in a porous media with Non-homogeneous boundary data. A homogenization process. Differential and Integral Equations 5 (1992), no. 1, 73–93. MR 1141728
[Ngu1] G. Nguetseng: A general convergence result for a functional related to the theory of homogenization. SIAM Journal of Mathematical Analysis 20 (1989), no. 3, 608–623. DOI 10.1137/0520043 | MR 0990867 | Zbl 0688.35007
[Ngu2] G. Nguetseng: Thèse d’Etat. Université Paris 6, 1984.
[Per] L. E. Persson, L. Persson, J. Wyller, N. Svanstedt: The Homogenization Method—An Introduction. Studentlitteratur Publishing, 1993. MR 1250833
[SaPa] E. Sanchez-Palencia: Non-Homogeneous Media and Vibration Theory. Springer Verlag, 1980. Zbl 0432.70002
[Tem] R. Temam: Navier Stokes Equation. North-Holland, 1984. MR 0769654
[Zei] E. Zeidler: Nonlinear Functional Analysis and its Applications II. Springer Verlag, 1990. MR 0816732 | Zbl 0684.47029
[Ziem] W. Ziemer: Weakly Differentiable Functions. Springer Verlag, 1989. MR 1014685 | Zbl 0692.46022
Partner of
EuDML logo