Title:
|
Higher order finite element approximation of a quasilinear elliptic boundary value problem of a non-monotone type (English) |
Author:
|
Liu, Liping |
Author:
|
Křížek, Michal |
Author:
|
Neittaanmäki, Pekka |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
41 |
Issue:
|
6 |
Year:
|
1996 |
Pages:
|
467-478 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A nonlinear elliptic partial differential equation with homogeneous Dirichlet boundary conditions is examined. The problem describes for instance a stationary heat conduction in nonlinear inhomogeneous and anisotropic media. For finite elements of degree $k\ge 1$ we prove the optimal rates of convergence $\mathcal O(h^k)$ in the $H^1$-norm and $\mathcal O(h^{k+1})$ in the $L^2$-norm provided the true solution is sufficiently smooth. Considerations are restricted to domains with polyhedral boundaries. Numerical integration is not taken into account. (English) |
Keyword:
|
nonlinear boundary value problem |
Keyword:
|
finite elements |
Keyword:
|
rate of convergence |
Keyword:
|
anisotropic heat conduction |
MSC:
|
35J65 |
MSC:
|
65N30 |
MSC:
|
74A15 |
idZBL:
|
Zbl 0870.65096 |
idMR:
|
MR1415252 |
DOI:
|
10.21136/AM.1996.134338 |
. |
Date available:
|
2009-09-22T17:52:57Z |
Last updated:
|
2020-07-28 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134338 |
. |
Reference:
|
[1] L. Boccardo, T. Gallouët and F. Murat: Unicité de la solution de certaines équations elliptiques non linéaires.C. R. Acad. Sci. Paris Ser. I Math. 315 (1992), 1159–1164. MR 1194509 |
Reference:
|
[2] Z. Chen: On the existence, uniqueness and convergence of nonlinear mixed finite element methods.Mat. Apl. Comput. 8 (1989), 241–258. Zbl 0709.65080, MR 1067288 |
Reference:
|
[3] P. G. Ciarlet: The Finite Element Method for Elliptic Problems.North-Holland, Amsterdam, 1978. Zbl 0383.65058, MR 0520174 |
Reference:
|
[4] J. Douglas and T. Dupont: A Galerkin method for a nonlinear Dirichlet problem.Math. Comp. 29 (1975), 689–696. MR 0431747, 10.1090/S0025-5718-1975-0431747-2 |
Reference:
|
[5] J. Douglas, T. Dupont and J. Serrin: Uniqueness and comparison theorems for nonlinear elliptic equations in divergence form.Arch. Rational Mech. Anal. 42 (1971), 157–168. MR 0393829, 10.1007/BF00250482 |
Reference:
|
[6] M. Feistauer, M. Křížek and V. Sobotíková: An analysis of finite element variational crimes for a nonlinear elliptic problem of a nonmonotone type.East-West J. Numer. Math. 1 (1993), 267–285. MR 1318806 |
Reference:
|
[7] M. Feistauer and V. Sobotíková: Finite element approximation of nonlinear elliptic problems with discontinuous coefficients.RAIRO Modèl. Math. Anal. Numér. 24 (1990), 457–500. MR 1070966, 10.1051/m2an/1990240404571 |
Reference:
|
[8] M. Feistauer and A. Ženíšek: Compactness method in finite element theory of nonlinear elliptic problems.Numer. Math. 52 (1988), 147–163. MR 0923708, 10.1007/BF01398687 |
Reference:
|
[9] J. Franců: Weakly continuous operators. Applications to differential equations.Appl. Math. 39 (1994), 45–56. MR 1254746 |
Reference:
|
[10] J. Frehse and R. Rannacher: Asymptotic $L^\infty $-error estimates for linear finite element approximations of quasilinear boundary value problems.SIAM J. Numer. Anal. 15 (1978), 418–431. MR 0502037, 10.1137/0715026 |
Reference:
|
[11] D. Gilbarg and N. S. Trudinger: Elliptic Partial Differential Equations of Second Order.Springer-Verlag, Berlin, 1977. MR 0473443 |
Reference:
|
[12] I. Hlaváček: Reliable solution of a quasilinear nonpotential elliptic problem of a nonmonotone type with respect to the uncertainty in coefficients.accepted by J. Math. Anal. Appl. MR 1464890 |
Reference:
|
[13] I. Hlaváček and M. Křížek: On a nonpotential and nonmonotone second order elliptic problem with mixed boundary conditions.Stability Appl. Anal. Contin. Media 3 (1993), 85–97. |
Reference:
|
[14] I. Hlaváček, M. Křížek and J. Malý: On Galerkin approximations of quasilinear nonpotential elliptic problem of a nonmonotone type.J.Math. Anal. Appl. 184 (1994), 168–189. MR 1275952, 10.1006/jmaa.1994.1192 |
Reference:
|
[15] M. Křížek and Q. Lin: On diagonal dominance of stiffness matrices in 3D.East-West J. Numer. Math. 3 (1995), 59–69. MR 1331484 |
Reference:
|
[16] M. Křížek and L. Liu: On a comparison principle for a quasilinear elliplic boundary value problem of a nonmonotone type.Applicationes Mathematicae 24 (1996), 97–107. MR 1404987, 10.4064/am-24-1-97-107 |
Reference:
|
[17] M. Křížek and P. Neittaanmäki: Mathematical and Numerical Modelling in Electrical Engineering: Theory and Applications.Kluwer, Dordrecht, 1996. MR 1431889 |
Reference:
|
[18] M. Křížek and V. Preiningerová: 3d solution of temperature fields in magnetic circuits of large transformers (in Czech).Elektrotechn. obzor 76 (1987), 646–652. |
Reference:
|
[19] F. A. Milner: Mixed finite element methods for quasilinear second-order elliptic problems.Math. Comp. 44 (1985), 303–320. Zbl 0567.65079, MR 0777266, 10.1090/S0025-5718-1985-0777266-1 |
Reference:
|
[20] J. Nečas: Les Méthodes Directes en Théorie des Équations Elliptiques.Academia, Prague, 1967. MR 0227584 |
Reference:
|
[21] J. Nečas: Introduction to the Theory of Nonlinear Elliptic Equations.Teubner, Leipzig, 1983. MR 0731261 |
Reference:
|
[22] J. A. Nitsche: On $L_\infty $-convergence of finite element approximations to the solution of nonlinear boundary value problem.in: Proc. of Numer. Anal. Conf. (ed. J. H. Miller), Academic Press, New York, 1977, 317–325. MR 0513215 |
Reference:
|
[23] R. H. Nochetto: Introduzione al Metodo Degli Elementi Finiti.Lecture Notes, Trento Univ., 1985. |
Reference:
|
[24] V. Preiningerová, M. Křížek and V. Kahoun: Temperature distribution in large transformer cores.Proc. of GANZ Conf. (ed. M. Franyó), Budapest, 1985, 254–261. |
Reference:
|
[25] K. Yosida: Functional Analysis.Springer-Verlag, Berlin, 1965. Zbl 0126.11504 |
Reference:
|
[26] A. Ženíšek: Nonlinear Elliptic and Evolution Problems and Their Finite Element Approximations.Academic Press, London, 1990. MR 1086876 |
Reference:
|
[27] A. Ženíšek: The finite element method for nonlinear elliptic equations with discontinuous coeffcients.Numer. Math. 58 (1990), 51–77. 10.1007/BF01385610 |
. |