[1] L. Boccardo, T. Gallouët and F. Murat:
Unicité de la solution de certaines équations elliptiques non linéaires. C. R. Acad. Sci. Paris Ser. I Math. 315 (1992), 1159–1164.
MR 1194509
[2] Z. Chen:
On the existence, uniqueness and convergence of nonlinear mixed finite element methods. Mat. Apl. Comput. 8 (1989), 241–258.
MR 1067288 |
Zbl 0709.65080
[3] P. G. Ciarlet:
The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978.
MR 0520174 |
Zbl 0383.65058
[5] J. Douglas, T. Dupont and J. Serrin:
Uniqueness and comparison theorems for nonlinear elliptic equations in divergence form. Arch. Rational Mech. Anal. 42 (1971), 157–168.
DOI 10.1007/BF00250482 |
MR 0393829
[6] M. Feistauer, M. Křížek and V. Sobotíková:
An analysis of finite element variational crimes for a nonlinear elliptic problem of a nonmonotone type. East-West J. Numer. Math. 1 (1993), 267–285.
MR 1318806
[7] M. Feistauer and V. Sobotíková:
Finite element approximation of nonlinear elliptic problems with discontinuous coefficients. RAIRO Modèl. Math. Anal. Numér. 24 (1990), 457–500.
DOI 10.1051/m2an/1990240404571 |
MR 1070966
[8] M. Feistauer and A. Ženíšek:
Compactness method in finite element theory of nonlinear elliptic problems. Numer. Math. 52 (1988), 147–163.
DOI 10.1007/BF01398687 |
MR 0923708
[9] J. Franců:
Weakly continuous operators. Applications to differential equations. Appl. Math. 39 (1994), 45–56.
MR 1254746
[10] J. Frehse and R. Rannacher:
Asymptotic $L^\infty $-error estimates for linear finite element approximations of quasilinear boundary value problems. SIAM J. Numer. Anal. 15 (1978), 418–431.
DOI 10.1137/0715026 |
MR 0502037
[11] D. Gilbarg and N. S. Trudinger:
Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin, 1977.
MR 0473443
[12] I. Hlaváček:
Reliable solution of a quasilinear nonpotential elliptic problem of a nonmonotone type with respect to the uncertainty in coefficients. accepted by J. Math. Anal. Appl.
MR 1464890
[13] I. Hlaváček and M. Křížek: On a nonpotential and nonmonotone second order elliptic problem with mixed boundary conditions. Stability Appl. Anal. Contin. Media 3 (1993), 85–97.
[14] I. Hlaváček, M. Křížek and J. Malý:
On Galerkin approximations of quasilinear nonpotential elliptic problem of a nonmonotone type. J.Math. Anal. Appl. 184 (1994), 168–189.
DOI 10.1006/jmaa.1994.1192 |
MR 1275952
[15] M. Křížek and Q. Lin:
On diagonal dominance of stiffness matrices in 3D. East-West J. Numer. Math. 3 (1995), 59–69.
MR 1331484
[16] M. Křížek and L. Liu:
On a comparison principle for a quasilinear elliplic boundary value problem of a nonmonotone type. Applicationes Mathematicae 24 (1996), 97–107.
DOI 10.4064/am-24-1-97-107 |
MR 1404987
[17] M. Křížek and P. Neittaanmäki:
Mathematical and Numerical Modelling in Electrical Engineering: Theory and Applications. Kluwer, Dordrecht, 1996.
MR 1431889
[18] M. Křížek and V. Preiningerová: 3d solution of temperature fields in magnetic circuits of large transformers (in Czech). Elektrotechn. obzor 76 (1987), 646–652.
[20] J. Nečas:
Les Méthodes Directes en Théorie des Équations Elliptiques. Academia, Prague, 1967.
MR 0227584
[21] J. Nečas:
Introduction to the Theory of Nonlinear Elliptic Equations. Teubner, Leipzig, 1983.
MR 0731261
[22] J. A. Nitsche:
On $L_\infty $-convergence of finite element approximations to the solution of nonlinear boundary value problem. in: Proc. of Numer. Anal. Conf. (ed. J. H. Miller), Academic Press, New York, 1977, 317–325.
MR 0513215
[23] R. H. Nochetto: Introduzione al Metodo Degli Elementi Finiti. Lecture Notes, Trento Univ., 1985.
[24] V. Preiningerová, M. Křížek and V. Kahoun: Temperature distribution in large transformer cores. Proc. of GANZ Conf. (ed. M. Franyó), Budapest, 1985, 254–261.
[25] K. Yosida:
Functional Analysis. Springer-Verlag, Berlin, 1965.
Zbl 0126.11504
[26] A. Ženíšek:
Nonlinear Elliptic and Evolution Problems and Their Finite Element Approximations. Academic Press, London, 1990.
MR 1086876
[27] A. Ženíšek:
The finite element method for nonlinear elliptic equations with discontinuous coeffcients. Numer. Math. 58 (1990), 51–77.
DOI 10.1007/BF01385610