Previous |  Up |  Next

Article

Title: Finite element variational crimes in the case of semiregular elements (English)
Author: Ženíšek, Alexander
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 41
Issue: 5
Year: 1996
Pages: 367-398
Summary lang: English
.
Category: math
.
Summary: The finite element method for a strongly elliptic mixed boundary value problem is analyzed in the domain $\Omega $ whose boundary $\partial \Omega $ is formed by two circles $\Gamma _1$, $\Gamma _2$ with the same center $S_0$ and radii $R_1$, $R_2=R_1+\varrho $, where $\varrho \ll R_1$. On one circle the homogeneous Dirichlet boundary condition and on the other one the nonhomogeneous Neumann boundary condition are prescribed. Both possibilities for $u=0$ are considered. The standard finite elements satisfying the minimum angle condition are in this case inconvenient; thus triangles obeying only the maximum angle condition and narrow quadrilaterals are used. The restrictions of test functions on triangles are linear functions while on quadrilaterals they are four-node isoparametric functions. Both the effect of numerical integration and that of approximation of the boundary are analyzed. The rate of convergence $O(h)$ in the norm of the Sobolev space $H^1$ is proved under the following conditions: 1. the (English)
Keyword: finite element method
Keyword: elliptic problems
Keyword: semiregular elements
Keyword: maximum angle condition
Keyword: variational crimes
MSC: 65N30
idZBL: Zbl 0870.65094
idMR: MR1404547
DOI: 10.21136/AM.1996.134332
.
Date available: 2009-09-22T17:52:18Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/134332
.
Reference: [1] I. Babuška, and A.K. Aziz: On the angle condition in the finite element method.SIAM J. Numer. Anal. 13 (1976), 214–226. MR 0455462, 10.1137/0713021
Reference: [2] M. Feistauer, and A. Ženíšek: Finite element solution of nonlinear elliptic problems.Numer. Math. 50 (1987), 451–475. MR 0875168, 10.1007/BF01396664
Reference: [3] P. Jamet: Estimations d’erreur pour des éléments finis presque dégénérés.RAIRO Anal. Numér. 10 (1976), 43–61. MR 0455282
Reference: [4] M. Křížek: On semiregular families of triangulations and linear interpolation.Appl. Math. 36 (1991), 223–232. MR 1109126
Reference: [5] J. Nečas: Les Méthodes Directes en Théorie des Equations Elliptiques.Academia-Masson, Prague-Paris, 1967. MR 0227584
Reference: [6] L.A. Oganesian, and L.A. Rukhovec: Variational-Difference Methods for the Solution of Elliptic Problems.Izd. Akad. Nauk ArSSR, Jerevan, 1979. (Russian)
Reference: [7] A. Ženíšek: Nonlinear Elliptic and Evolution Problems and Their Finite Element Approximations.Academic Press, London, 1990. MR 1086876
Reference: [8] A. Ženíšek, and M. Vanmaele: The interpolation theorem for narrow quadrilateral isoparametric finite elements.Numer. Math. 72 (1995), 123–141. MR 1359711, 10.1007/s002110050163
.

Files

Files Size Format View
AplMat_41-1996-5_4.pdf 3.808Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo