Previous |  Up |  Next

Article

Title: LFS functions in multi-objective programming (English)
Author: Neralić, Luka
Author: Zlobec, Sanjo
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 41
Issue: 5
Year: 1996
Pages: 347-366
Summary lang: English
.
Category: math
.
Summary: We find conditions, in multi-objective convex programming with nonsmooth functions, when the sets of efficient (Pareto) and properly efficient solutions coincide. This occurs, in particular, when all functions have locally flat surfaces (LFS). In the absence of the LFS property the two sets are generally different and the characterizations of efficient solutions assume an asymptotic form for problems with three or more variables. The results are applied to a problem in highway construction, where the quantity of dirt to be removed and the uniform smoothness of the shape of a terrain are optimized simultaneously. (English)
Keyword: multi-objective program
Keyword: efficient (Pareto) solution
Keyword: properly efficient solution
Keyword: LFS function
Keyword: convex program
Keyword: $l_{1}$ norm
Keyword: $l_{\infty }$ norm
Keyword: simultaneous optimization
MSC: 41A28
MSC: 49N60
MSC: 90C29
idZBL: Zbl 0870.90090
idMR: MR1404546
DOI: 10.21136/AM.1996.134331
.
Date available: 2009-09-22T17:52:11Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/134331
.
Reference: [1] S. M. Allende, C. N. Bouza: A parametric mathematical programming approach to the estimation of the coefficients of the linear regression model.Parametric Optimization and Related Topics III, J. Guddat et al. (eds.), Akademie Verlag, Berlin, 1993, pp. 9–20. MR 1241214
Reference: [2] A. Ben-Israel, A. Ben-Tal, S. Zlobec: Optimality in Nonlinear Programming: A Feasible Directions Approach.Wiley Interscience, New York, 1981. MR 0607673
Reference: [3] M. D. Canon, C. D. Cullum, E. Polak: Theory of Optimal Control and Mathematical Programming.McGraw-Hill, New York, 1970. MR 0397497
Reference: [4] A. Charnes: Correspondence.1989.
Reference: [5] A. Charnes, W. W. Cooper: Management Models and Industrial Applications of Linear Programming, Vol. I.Wiley, New York, 1961. MR 0157774
Reference: [6] S. J. Citron: Elements of Optimal Control.Holt, Rinehard and Winston, New York, 1969. Zbl 0221.49002
Reference: [7] R. W. Farebrother: The historical development of $L_{1}$ and $L_{\infty }$ estimation procedures.Statistical Data Analysis Based on $L_{1}$-norm and Related Methods, Y. Dodge (ed.), North Holland, Amsterdam, 1987, pp. 37–63. MR 0949218
Reference: [8] M. D. Intriligator: Mathematical Optimization and Economic Theory.Prentice Hall, Englewood Cliffs, New Jersey, 1972. MR 0353945
Reference: [9] S. Karlin: Mathematical Methods in Theory of Games, Programming and Economics, Vol. I.Addison-Wesley, Reading, Massachussetts, 1959. MR 0111634
Reference: [10] O. J. Karst: Linear curve fitting using least deviations.Journal of the American Statistical Association 53 (1958), 118–132. Zbl 0080.13402, MR 0134453, 10.1080/01621459.1958.10501430
Reference: [11] Lj. Martić: Bicriterial programming in regression analysis.Proceedings of KOI $^{\prime }$91, Lj. Martić and L. Neralić (eds.), Faculty of Economics, Zagreb, 1991, pp. 37–45. (Croatian)
Reference: [12] Lj. Martić: A simple regression by $l_{1}$ and $L_{\infty }$ criteria.Proceedings of KOI  $^{\prime }$92, V. Bahovec, Lj. Martić and L. Neralić (eds.), Croatian Operational Research Society, Rovinj, 1992, pp. 17–32. (Croatian)
Reference: [13] M. E. Salukvadze: Vector-Valued Optimization Problems in Control Theory.Academic Press, New York, 1969. MR 0563922
Reference: [14] F. Sharifi Mokhtarian: Mathematical Programming with LFS Functions.M. Sc. Thesis, McGill University, Montreal, Quebec, 1992.
Reference: [15] F. Sharifi Mokhtarian, S. Zlobec: Mathematical Programming with LFS Functions.Utilitas Mathematica 45 (1994), 3–15. MR 1284014
Reference: [16] M. van Rooyen, X. Zhou, S. Zlobec: A saddle-point characterization of Pareto optima.Mathematical Programming 67 (1994), 77–88. MR 1300819, 10.1007/BF01582213
Reference: [17] T. L. Vincent, W. J. Grantham: Optimality in Parametric Systems.Wiley Interscience, New York, 1981. MR 0628316
Reference: [18] X. Zhou, F. Sharifi Mokhtarian, S. Zlobec: A simple constraint qualification in convex programming.Mathematical Programming 61 (1993), 385–397. MR 1242469, 10.1007/BF01582159
Reference: [20] S. Zlobec: Two characterizations of Pareto minima in convex multicriteria optimization.Aplikace Matematiky 29 (1984), 342–349. Zbl 0549.90085, MR 0772269
Reference: [19] S. Zlobec: Characterizations of optimality in nonconvex programming.The Fourteenth Symposium on Mathematical Programming with Data Perturbations, The George Washington University, Washington, D. C., May 23, 1992.
.

Files

Files Size Format View
AplMat_41-1996-5_3.pdf 1.814Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo