[AS64] Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions. National Bureau of Standards, 1964.
[Ec73] Eckhaus, W.:
Matched asymptotic expansions and singular perturbations. North-Holland, Amsterdam, 1973.
MR 0670800 |
Zbl 0255.34002
[Em73] Emel’janov, K.V.: A difference scheme for a three-dimensional elliptic equation with a small parameter multiplying the highest derivative. Boundary value problems for equations of mathematical physics, USSR Academy of Sciences, Ural Scientific Centre, 1973, pp. 30–42. (Russian)
[Gu93] Guo, W.: Uniformly convergent finite element methods for singularly perturbed parabolic problems. Ph.D. Dissertation, National University of Ireland, 1993.
[HK90] Han, H., Kellogg, R.B.:
Differentiability properties of solutions of the equation $-\epsilon ^2\Delta u+ru=f(x,y)$ in a square. SIAM J. Math. Anal., 21 (1990), 394–408.
DOI 10.1137/0521022 |
MR 1038899
[Le76] Lelikova, E.F.:
On the asymptotic solution of an elliptic equation of the second order with a small parameter effecting the highest derivative. Differential Equations 12 (1976), 1852–1865. (Russian)
MR 0445100
[SK87] Shih, S.D., Kellogg, R.B.:
Asymptotic analysis of a singular perturbation problem. SIAM J. Math. Anal., 18 (1987), 1467–1511.
DOI 10.1137/0518107 |
MR 0902346
[Si92] Shishkin, G.I.:
Methods of constructing grid approximations for singularly perturbed boundary value problems. Sov. J. Numer. Anal. Math. Modelling 7 (1992), 537–562.
MR 1202653 |
Zbl 0816.65072
[ST92] Stynes, M., Tobiska, L.:
Necessary $L_2$-uniform conditions for difference schemes for two-dimensional convection-diffusion problems. Computers Math. Applic. 29 (1995), 45–53.
DOI 10.1016/0898-1221(94)00237-F |
MR 1321058
[Ys83] Yserentant, H.:
Die maximale Konsistenzordnung von Differenzapproximationen nichtnegativer Art. Numer. Math. 42 (1983), 119–123.
DOI 10.1007/BF01400922 |
MR 0716478