[2] I. Babuška, A. Miller:
The post-processing in the finite element method, Parts I–II. Internat. J. Numer. Methods Engrg. 20 (1984), 1085–1109, 1111–1129.
DOI 10.1002/nme.1620200611
[3] H.-J. Bartsch:
Taschenbuch mathematischer Formeln. VEB Fachbuchverlag, Leipzig, 1979.
MR 1246330
[4] D. Begis, R. Glowinski:
Applications de la méthode des éléments finis à l’approximation d’un problème de domaine optimal. Appl. Math. Optim. 2 (1975), 130–169.
DOI 10.1007/BF01447854 |
MR 0443372
[5] J. H. Bramble, R. S. Hilbert:
Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation. SIAM J. Numer. Anal. 7 (1970), 112–124.
DOI 10.1137/0707006 |
MR 0263214
[6] J. H. Bramble, A. H. Schatz:
Estimates for spline projections. RAIRO Anal. Numér. 10 (1976), 5–37.
MR 0436620
[7] P. G. Ciarlet:
Basic error estimates for elliptic problems, Handbook of Numerical Analysis II (P. G. Ciarlet, J. L. Lions eds.). North-Holland, Amsterdam, 1991.
MR 1115237
[8] R. Durán, M. A. Muschietti, R. Rodríguez:
On the asymptotic exactness of error estimators for linear triangular finite elements. Numer. Math. 59 (1991), 107–127.
DOI 10.1007/BF01385773 |
MR 1106377
[9] G. Goodsell, J. R. Whiteman:
Pointwise superconvergence of recovered gradients for piecewise linear finite element approximations to problems of planar linear elasticity. Numer. Methods Partial Differential Equations 6 (1990), 59–74.
DOI 10.1002/num.1690060105 |
MR 1034433
[10] G. Goodsell, J. R. Whiteman:
Superconvergence of recovered gradients of piecewise quadratic finite element approximations. Numer. Methods Partial Differential Equations 7 (1991), 61–83.
DOI 10.1002/num.1690070106 |
MR 1088856
[11] E. J. Haug, K. K. Choi, V. Komkov:
Design sensitivity analysis of structural systems. Academic Press, London, 1986.
MR 0860040
[12] I. Hlaváček, M. Křížek: On a superconvergent finite element scheme for elliptic systems, Parts I–III. Apl. Mat. 32 (1987), 131–154, 200–213, 276–289.
[13] I. Hlaváček, M. Křížek:
Optimal interior and local error estimates of a recovered gradient of linear elements on nonuniform triangulations. J. Comput. Math (to appear).
MR 1414854
[14] V. Kantchev:
Superconvergence of the gradient for linear finite elements for nonlinear elliptic problems. Proc. of the ISNA Conf., Prague, 1987, Teubner, Leipzig, 1988, 199–204.
MR 1171706 |
Zbl 0677.65107
[15] V. Kantchev, R. D. Lazarov: Superconvergence of the gradient of linear elements for 3D Poisson equation. Proc. Internat. Conf. Optimal Algorithms (ed. B. Sendov), Blagoevgrad, 1986, Izd. Bulg. Akad. Nauk, Sofia, 1986, 172–182.
[16] M. Křížek:
An equilibrium finite element method in three-dimensional elasticity. Apl. Mat. 27 (1982), 46–75.
MR 0640139
[17] M. Křížek, P. Neittaanmäki:
Superconvergence phenomenon arising in the finite element method from averaging gradients. Numer. Math. 45 (1984), 105–116.
DOI 10.1007/BF01379664 |
MR 0761883
[21] Q. Lin, N. Yan: A rectangle test for singular solution with irregular meshes. Proc. of Systems Sci. & Systems Engrg., Great Wall (H.K.) Culture Publ. Co., 1991, 236–237.
[22] Q. Lin, Q. Zhu:
Asymptotic expansion for the derivative of finite elements. J. Comput. Math. 2 (1984), 361–363.
MR 0869509
[24] L. A. Oganesjan, L. A. Ruchovec:
An investigation of the rate of convergence of variational-difference schemes for second order elliptic equations in a two-dimensional region with a smooth boundary (Russian). Ž. Vyčisl. Mat. i Mat. Fiz. 9 (1969), 1102–1120.
MR 0295599
[25] V. Thomée, J. Xu, N. Zhang:
Superconvergence of the gradient in piecewise linear finite element approximation to a parabolic problem. SIAM J. Numer. Anal. 26 (1989), 553–573.
DOI 10.1137/0726033 |
MR 0997656
[26] L. B. Wahlbin:
Local behavior in finite element methods, Handbook of Numerical Analysis II (P. G. Ciarlet, J. L. Lions eds.). North-Holland, Amsterdam, 1991, 353–522.
MR 1115238
[27] L. B. Wahlbin:
Superconvergence in Galerkin finite element methods (Lecture notes). Cornell Univ., 1994, 1–243.
MR 1439050
[28] M. F. Wheeler, J. R. Whiteman:
Superconvergent recovery of gradients on subdomains from piecewise linear finite element approximations. Numer. Methods Partial Differential Equations 3 (1987), 65–82.
DOI 10.1002/num.1690030106 |
MR 1012906
[29] R. Wohlgemuth: Superkonvergenz des Gradienten im Postprocessing von FiniteElemente-Methoden. Preprint Nr. 94, Tech. Univ. Chemnitz, 1989, 1–15.
[30] O. C. Zienkiewicz, J. Z. Zhu:
The superconvergent patch recovery and a posteriori error estimates. Part 1, Internat. J. Numer. Methods Engrg. 33 (1992), 1331–1364.
DOI 10.1002/nme.1620330702 |
MR 1161557