Previous |  Up |  Next

Article

Keywords:
Kurzweil-Henstock integration; convolution; Banach space
Summary:
The abstract Perron-Stieltjes integral in the Kurzweil-Henstock sense given via integral sums is used for defining convolutions of Banach space valued functions. Basic facts concerning integration are preseted, the properties of Stieltjes convolutions are studied and applied to obtain resolvents for renewal type Stieltjes convolution equations.
References:
[1] O. Diekmann, M. Gyllenberg, H. R. Thieme: Perturbing semigroups by solving Stieltjes renewal equations. Differ. Integral Equ. 6 (1993), 155–181. MR 1190171
[2] O. Diekmann, M. Gyllenberg, H. R. Thieme: Perturbing evolutionary systems by step responses on cumulative outputs. Differ. Integral Equ. 8 (1995), 1205–1244. MR 1325554
[3] N. Dunford, J. T. Schwartz: Linear Operators I. Interscience Publishers, New York, London, 1958. MR 0117523
[4] Ch. S. Hönig: Volterra-Stieltjes Integral Equations. North-Holland Publ. Comp., Amsterdam, 1975. MR 0499969
[5] J. Kurzweil: Nichtabsolut konvergente Integrale. BSB B. G. Teubner, Leipzig, 1980. MR 0597703 | Zbl 0441.28001
[6] Š. Schwabik: Generalized Ordinary Differential Equations. World Scientific, Singapore, 1992. MR 1200241 | Zbl 0781.34003
[7] Š. Schwabik, M. Tvrdý, O. Vejvoda: Differential and Integral Equations. Academia & Reidel, Praha & Dordrecht, 1979. MR 0542283
[8] Š. Schwabik: Abstract Perron-Stieltjes integral. Math. Bohem. 121 (1996), 425–447. MR 1428144 | Zbl 0879.28021
[9] Š. Schwabik: Linear Stieltjes integral equations in Banach spaces. Math. Bohem. 124 (1999), 433–457. MR 1722877
[10] Š. Schwabik: Linear Stieltjes integral equations in Banach spaces II; Operator valued solutions. Math. Bohem. 125 (2000), 431–454. MR 1802292 | Zbl 0974.34057
[11] Š. Schwabik: A note on integration by parts for abstract Perron-Stieltjes integrals. Math. Bohem. 126 (2001), 613–626. MR 1970264 | Zbl 0980.26005
Partner of
EuDML logo