[1] H. Attouch: Variational Convergence for Functinals and Operators. Pitman, London, 1984.
[2] J. Banas and K. Goebel:
Measures of Noncompactness in Banach Spaces. Marcel Dekker, New York, 1980.
MR 0591679
[5] J. Diestel and J. Uhl:
Vector Measures. Math. Surveys, Vol. 15, AMS, Providence, RI, 1977.
MR 0453964
[7] A. Friedman:
Partial Differential Equations. Krieger, Huntington, New York, 1976.
MR 0454266
[8] K. Glashoff and J. Sprekels:
An application of Glicksberg’s theorem to set-valued integral equations arising in the theory of thermostats. SIAM J. Math. Anal. 12 (1981), 477–486.
DOI 10.1137/0512041 |
MR 0613326
[9] K. Glashoff and J. Sprekels:
The regulation of temperature by thermostat and set-valued integral equations. J. Integral Equations 4 (1982), 95–112.
MR 0654076
[12] D. Kandilakis and N. S. Papageorgiou:
On the properties of the Aumann integral with applications to differential inclusions and control systems. Czechoslovak Math. J. 39 (1989), 1–15.
MR 0983479
[13] D. Kandilakis and N. S. Papageorgiou:
Properties of measurable multifunctions with stochastic domain and their applications. Math. Japonica 35 (1990), 629–643.
MR 1067862
[14] E. Klein and A. Thompson:
Theory of Correspondences. Willey, New York, 1984.
MR 0752692
[16] G. Leitmann, E. Ryan and A. Steinberg:
Feedback control of uncertain systems; Robusteness with respect to neglected actuator and sensor dynamics. Intern. J. Control 43 (1986), 1243–1256.
DOI 10.1080/00207178608933535 |
MR 0832557
[17] L. Lyapin: Hammerstein inclusions. Diff. Equations 12 (1976), 638–643.
[22] N. S. Papageorgiou:
Measurable multifunctions and their applications to convex integral functionals. Inter, J. Math. and Math. Sci. 12 (1989), 175–192.
MR 0973087 |
Zbl 0659.28008
[25] R. Ragimkhanov:
The existence of solutions to an integral equation with multivalued right-hand side. Siberian Math. Jour. 17 (1976), 533–536.
DOI 10.1007/BF00967875
[26] S. Szufla:
On the existence of Volterra integral equations in Banach space. Bull. Polish Acad. Sci. 22 (1974), 1211–1213.
MR 0380306
[26] H. Tanabe: Equations of Evolution. Pitman, London, 1977.
[28] E. Tarafdar and R. Výborný:
Fixed point theorems for condensing multivalued mappings on a locally convex topological space. Bull. Austr. Math. Soc. 12 (1975), 161–170.
DOI 10.1017/S0004972700023789 |
MR 0383167
[31] E. Zeidler:
Nonlinear Functional Analysis and its Applications II. Springer, New York, 1990.
MR 0816732 |
Zbl 0684.47029