[1] C. Apostol, L. A. Fialkow, D. A. Herrero and D. Voiculescu:
Approximation of Hilbert space operators, Volume II. Research Notes in Mathematics 102, Pitman, Boston, 1984.
MR 0735080
[2] S. C. Arora and J. K. Thukral:
On a class of operators. Glasnik Math. 21 (1986), 381–386.
MR 0896819
[5] S. W. Brown:
Hyponormal operators with thick spectrum have invariant subspaces. Ann. of Math. 125 (1987), 93–103.
DOI 10.2307/1971289 |
MR 0873378
[7] I. Colojoara and C. Foias:
Theory of generalized spectral operators. Gordon and Breach, New York, 1968.
MR 0394282
[9] S. Djordjevic, I. Jeon and E. Ko:
Weyl’s theorem through local spectral theory. Glasgow Math. J. 44 (2002), 323–327.
MR 1902409
[10] B. P. Duggal:
On the spectrum of $p$-hyponormal operators. Acta Sci. Math. (Szeged) 63 (1997), 623–637.
MR 1480502 |
Zbl 0893.47013
[13] R. E. Harte:
Invertibility and singularity. Dekker, New York, 1988.
Zbl 0678.47001
[14] C. Kitai: Invariant closed sets for linear operators. Ph.D. Thesis, Univ. of Toronto, 1982.
[15] E. Ko:
Algebraic and triangular $n$-hyponormal operators. Proc. Amer. Math. Soc. 123 (1995), 3473–3481.
MR 1291779 |
Zbl 0877.47015
[22] B. L. Wadhwa: Spectral, $M$-hyponormal and decomposable operators. Ph.D. thesis, Indiana Univ., 1971.
[23] D. Xia:
Spectral theory of hyponormal operators. Operator Theory 10, Birkhäuser-Verlag, 1983.
MR 0806959 |
Zbl 0523.47012