Article
Keywords:
multiplicity results; eigenvalues; bifurcation methods; nodal zeros; multi-point boundary value problems
Summary:
We study the existence of nodal solutions of the $m$-point boundary value problem \[ u^{\prime \prime }+ f(u)=0, \quad 0<t<1, u^{\prime }(0)=0, \quad u(1)=\sum ^{m-2}_{i=1} \alpha _i u(\eta _i) \] where $\eta _i\in \mathbb{Q}$ $(i=1, 2, \cdots , m-2)$ with $0<\eta _1<\eta _2<\cdots <\eta _{m-2}<1$, and $\alpha _i\in \mathbb{R}$ $(i=1, 2, \cdots , m-2)$ with $\alpha _i>0$ and $0<\sum \nolimits ^{m-2}_{i=1} \alpha _i < 1$. We give conditions on the ratio $f(s)/s$ at infinity and zero that guarantee the existence of nodal solutions. The proofs of the main results are based on bifurcation techniques.
References:
[2] A. Castro, P. Drábek, J. M. Neuberger:
A sign-changing solution for a superlinear Dirichlet problem. II. Proceedings of the Fifth Mississippi State Conference on Differential Equations and Computational Simulations (Mississippi State, MS, 2001), pp. 101–107.
MR 1976635
[5] R. Ma, B. Thompson:
Nodal solutions for nonlinear eigenvalue problems. Nonlinear Analysis, Theory Methods Appl. 59 (2004), 717–718.
MR 2096325
[6] Y. Naito, S. Tanaka:
On the existence of multiple solutions of the boundary value problem for nonlinear second-order differential equations. Nonlinear Analysis TMA 56 (2004), 919–935.
DOI 10.1016/j.na.2003.10.020 |
MR 2036055
[9] B. Ruf, P. N. Srikanth:
Multiplicity results for ODEs with nonlinearities crossing all but a finite number of eigenvalues. Nonlinear Analysis TMA 10 (1986), 157–163.
DOI 10.1016/0362-546X(86)90043-X |
MR 0825214
[10] B. P. Rynne:
Global bifurcation for $2m$th-order boundary value problems and infinity many solutions of superlinear problems. J. Differential Equations 188 (2003), 461–472.
DOI 10.1016/S0022-0396(02)00146-8 |
MR 1954290
[12] X. Xu:
Multiple sign-changing solutions for some $m$-point boundary value problems. Electronic Journal of Differential Equations 89 (2004), 1–14.
MR 2075428 |
Zbl 1058.34013