Article
Keywords:
automorphism; local automorphism; algebra of operators on a Hilbert space
Summary:
Let $H$ be an infinite-dimensional almost separable Hilbert space. We show that every local automorphism of $\mathcal B(H)$, the algebra of all bounded linear operators on a Hilbert space $H$, is an automorphism.
References:
[5] D. Larson, A. R. Sourour:
Local derivations and local automorphisms of ${B}(X)$. Proc. Symp. Pure Math. 51 (1990), 187–194.
MR 1077437