Article
Keywords:
sign pattern; orthogonality; orthogonal matrix
Summary:
A sign pattern $A$ is a $\pm $ sign pattern if $A$ has no zero entries. $A$ allows orthogonality if there exists a real orthogonal matrix $B$ whose sign pattern equals $A$. Some sufficient conditions are given for a sign pattern matrix to allow orthogonality, and a complete characterization is given for $\pm $ sign patterns with $n-1 \le N_-(A) \le n+1$ to allow orthogonality.
References:
[1] L. B. Beasley, R. A. Brualdi, and B. L. Shader:
Combinatorial orthogonality. In: Combinatorial and Graph-Theoretical Problems in Linear Algebra, R. A. Brualdi, S. Friedland, and V. Klee (eds.), Springer-Verlag, Berlin, 1993, pp. 207–218.
MR 1240965
[2] G.-S. Cheon, B. L. Shader:
How sparse can a matrix with orthogonal rows be?. Journal of Combinatorial Theory, Series A 85 (1999), 29–40.
DOI 10.1006/jcta.1998.2898 |
MR 1659464
[3] C. Waters:
Sign pattern matrices that allow orthogonality. Linear Algebra Appl. 235 (1996), 1–16.
MR 1374247 |
Zbl 0852.15018
[4] G.-S. Cheon, C. R. Johnson, S.-G. Lee, and E. J. Pribble:
The possible numbers of zeros in an orthogonal matrix. Electron. J. Linear Algebra 5 (1999), 19–23.
MR 1659324
[5] C. A. Eschenbach, F. J. Hall, D. L. Harrell, and Z. Li:
When does the inverse have the same pattern as the transpose?. Czechoslovak Math. J. 124 (1999), 255–275.
DOI 10.1023/A:1022496101277 |
MR 1692477
[6] R. A. Horn, C. R. Johnson:
Matrix Analysis. Cambridge University Press, Cambridge, 1985.
MR 0832183