Previous |  Up |  Next

Article

Keywords:
Lattice ordered group; projectability; strong projectability; lateral completion; orthocompletion; Specker lattice ordered group
Summary:
In this paper we prove that the lateral completion of a projectable lattice ordered group is strongly projectable. Further, we deal with some properties of Specker lattice ordered groups which are related to lateral completeness and strong projectability.
References:
[1] S. J.  Bernau: The lateral completion of an arbitrary lattice group. J.  Austral. Math. Soc. 19 (1975), 263–289. DOI 10.1017/S1446788700031463 | MR 0384640 | Zbl 0314.06011
[2] S. J.  Bernau: Lateral and Dedekind completion of archimedean lattice groups. J.  London Math. Soc. 12 (1976), 320–322. DOI 10.1112/jlms/s2-12.3.320 | MR 0401579 | Zbl 0333.06008
[3] R. D.  Bleier: The ${\mathrm SP}$-hull of a lattice-ordered group. Canadian J.  Math. 26 (1974), 866–878. DOI 10.4153/CJM-1974-081-x | MR 0345891
[4] R. D.  Bleier: The orthocompletion of a lattice-ordered group. Indagationes Math. 38 (1976), 1–7. DOI 10.1016/1385-7258(76)90000-7 | MR 0401581 | Zbl 0329.06013
[5] D.  Byrd and T. J.  Lloyd: A note on lateral completion in lattice ordered groups. J.  London Math. Soc. 1 (1969), 358–362. DOI 10.1112/jlms/s2-1.1.358 | MR 0249339
[6] D. A.  Chambless: Representation of the projectable and strongly projectable hulls of a lattice ordered group. Proc. Amer. Math. Soc. 19 (1975), 263–289. MR 0295990
[7] P. F.  Conrad: Lateral completion of lattice ordered groups. Proc. London Math. Soc. 19 (1969), 444–480. DOI 10.1112/plms/s3-19.3.444 | MR 0244125
[8] P. F.  Conrad: Lattice Ordered Groups. Tulane University, 1970. Zbl 0258.06011
[9] P. F.  Conrad: The hulls of representable $\ell $-groups and $f$-rings. J.  Austral. Math. Soc. 16 (1973), 385–415. DOI 10.1017/S1446788700015391 | MR 0344173
[10] P. F.  Conrad: Epi-Archimedean $\ell $-groups. Czechoslovak Math.  J. 24 (1974), 192–218. MR 0347701
[11] P. F.  Conrad and M. R.  Darnel: Generalized Boolean algebras in lattice-ordered groups. Order 14 (1998), 295–319. DOI 10.1023/A:1006075129584 | MR 1644504
[12] M. R.  Darnel: The Theory of Lattice Ordered Groups. Marcel Dekker, New York-Basel, 1995. MR 1304052
[13] J.  Jakubík: Representations and extensions of $\ell $-groups. Czechoslovak Math.  J. 13 (1963), 267–282. (Russian)
[14] J.  Jakubík: Lateral and Dedekind completions of strongly projectable lattice ordered groups. Czechoslovak Math.  J 47 (1997), 511–523. DOI 10.1023/A:1022419703077 | MR 1461430
[15] J.  Jakubík: Orthogonal hull of a strongly projectable lattice ordered group. Czechoslovak Math.  J. 28 (1978), 484–504. MR 0505957
[17] J.  Jakubík: Torsion classes of Specker lattice ordered groups. Czechoslovak Math.  J. 52 (2002), 469–482. DOI 10.1023/A:1021711326115 | MR 1923254
[18] J.  Jakubík: Konvexe Ketten in $\ell $-Gruppen. Čas. pěst. mat. 84 (1959), 53–63. MR 0104740
[19] K.  Keimel: Représentation de groupes et d’anneaux réticulés par des sections dans des faisceaux. PhD. Thesis, Université de Paris, 1970. Zbl 0249.06002
[20] G. Ya.  Rotkovich: On some kinds of completeness in archimedean lattice ordered groups. Funkc. anal. 9 (1977), 138–143. (Russian)
[21] R.  Sikorski: Boolean Algebras. Second Edition, Springer-Verlag, Berlin, 1964. MR 0126393 | Zbl 0123.01303
[22] E. C.  Smith Jr. and A.  Tarski: Higher degrees of distributivity and completeness in Boolean algebras. Trans. Amer. Math. Soc. 84 (1957), 230–257. DOI 10.1090/S0002-9947-1957-0084466-4 | MR 0084466
Partner of
EuDML logo