[2] S. Fu and E. Straube:
Compactness in the $\bar{\partial }$-Neumann problem. In: Proc. conf. Complex analysis and geometry, Ohio, Ohio State Univ. Math. Res Inst. Publ., 2001, pp. 141–160.
MR 1912737
[4] S. Axler:
The Bergman space, the Bloch space, and commutators of multiplikation-operators. Duke Math. J. 53 (1986), 315–332.
MR 0850538
[5] J. Arazy, S. Fischer and J. Peetre:
Hankel-operators on weighted Bergman spaces. Amer. J. Math. 110 (1988), 989–1053.
DOI 10.2307/2374685 |
MR 0970119
[11] F. Haslinger:
The canonical solution operator to $\bar{\partial }$ restricted to spaces of entire functions. Ann. Fac. Sci. Toulouse Math. 11 (2002), 57–70.
DOI 10.5802/afst.1018 |
MR 1986383
[13] L. Hörmander:
An Introduction to Complex Analysis in Several Variables. Von Nostand, Princeton, 1966.
MR 0203075
[14] W. Knirsch: Kompaktheit des $\bar{\partial }$-Neumann Operators. Dissertation, Universität Wien, Wien, 2000.
[15] N. Salinas, A. Sheu and H. Upmeier:
Toeplitz-operators on pseudoconvex domains and foliation $C^*$-algebras. Ann. Math. 130 (1989), 531–565.
DOI 10.2307/1971454 |
MR 1025166
[17] G. Schneider:
Non-compactness of the solution operator to $\bar{\partial }$ on the Fock-space in several dimensions. Math. Nachr. 278 (2005), 312–317.
DOI 10.1002/mana.200310242 |
MR 2110534
[19] S. Fu and E. Straube:
Compactness of the $\bar{\partial }$-Neumann problem on convex domains. J. Functional Analysis 159 (1998), 629–641.
DOI 10.1006/jfan.1998.3317 |
MR 1659575