Article
Keywords:
pseudo $MV$-algebras; lattice ordered group; unital lattice ordered group; variety
Summary:
In this paper we investigate the relation between the lattice of varieties of pseudo $MV$-algebras and the lattice of varieties of lattice ordered groups.
References:
[1] R. Cignoli, M. I. D’Ottaviano and D. Mundici:
Algebraic Foundations of many-valued Reasoning. Trends in Logic, Studia Logica Library, Vol. 7, Kluwer Academic Publishers, Dordrecht, 2000.
MR 1786097
[3] A. Dvurečenskij:
States on pseudo $MV$-algebras. Studia Logica (to appear).
MR 1865858
[4] G. Georgescu and A. Iorgulescu:
Pseudo $MV$-algebras: a noncommutative extension of $MV$-algebras. In: The Proceedings of the Fourth International Symposium on Economic Informatics, Buchurest, Romania, 1999, pp. 961–968.
MR 1730100
[5] G. Georgescu and A. Iorgulescu:
Pseudo $MV$-algebras. Multiple-Valued Logic (a special issue dedicated to Gr. C. Moisil) 6 (2001), 95–135.
MR 1817439
[7] J. Jakubík:
Direct product decompositions of pseudo $MV$-algebras. Arch. Math. 37 (2001), 131–142.
MR 1838410
[9] J. Rachůnek: Prime spectra of non-commutative generalizations of $MV$-algebras. (Submitted).