Previous |  Up |  Next

Article

Title: On the center of the generalized Liénard system (English)
Author: Zhao, Cheng-Dong
Author: He, Qi-Min
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 52
Issue: 4
Year: 2002
Pages: 817-832
Summary lang: English
.
Category: math
.
Summary: In this paper, we discuss the conditions for a center for the generalized Liénard system \[ \frac {{\rm d}x}{{\rm d}t}=\varphi (y)-F(x), \qquad \frac {{\rm d}y}{{\rm d}t}=-g(x), \] or \[ \frac {{\rm d}x}{{\rm d}t}=\psi (y), \qquad \frac {{\rm dy}}{{\rm d}t}= -f(x)h(y)-g(x), \] with $f(x)$, $g(x)$, $\varphi (y)$, $\psi (y)$, $h(y)\: \mathbb R\rightarrow \mathbb R$, $F(x)=\int _0^xf(x)\mathrm{d}x$, and $xg(x)>0$ for $x\ne 0$. By using a different technique, that is, by introducing auxiliary systems and using the differential inquality theorem, we are able to generalize and improve some results in [1], [2]. (English)
Keyword: generalized Liénard system
Keyword: local center
Keyword: global center
Keyword: the differetial inequality theorem
Keyword: the first approximation
MSC: 34C05
MSC: 34C25
idZBL: Zbl 1021.34023
idMR: MR1940062
.
Date available: 2009-09-24T10:57:07Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127767
.
Reference: [1] Shu-Xiang Yu and Ji-Zhou Zhang: On the center of the Liénard equation.J.  Differential Equations 102 (1993), 53–61. MR 1209976, 10.1006/jdeq.1993.1021
Reference: [2] Yu-Rong Zhou and Xiang-Rong Wang: On the conditions of a center of the Liénard equation.J.  Math. Anal. Appl. 100 (1993), 43–59. MR 1250276, 10.1006/jmaa.1993.1381
Reference: [3] P. J.  Ponzo and N.  Wax: On periodic solutions of the system $\dot{x}=y-F(x)$, $\dot{y}=-g(x)$.J.  Differential Equations 10 (1971), 262–269. MR 0288360, 10.1016/0022-0396(71)90050-7
Reference: [4] Jitsuro Sugie: The global center for the Liénard system.Nonlinear Anal. 17 (1991), 333–345. MR 1123207, 10.1016/0362-546X(91)90075-C
Reference: [5] T.  Hara and T.  Yoneyama: On the global center of generalized Liénard equation and its application to stability problems.Funkc. Ekvacioj 28 (1985), 171–192. MR 0816825
Reference: [6] Lawrence Perko: Differential Equations and Dynamical Systems.Springer-Verlag, New York, 1991. MR 1083151, 10.1007/978-1-4684-0392-3
.

Files

Files Size Format View
CzechMathJ_52-2002-4_14.pdf 357.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo