Previous |  Up |  Next

Article

Title: Semiregularity of congruences implies congruence modularity at 0 (English)
Author: Chajda, Ivan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 52
Issue: 2
Year: 2002
Pages: 333-336
Summary lang: English
.
Category: math
.
Summary: We introduce a weakened form of regularity, the so called semiregularity, and we show that if every diagonal subalgebra of $\mathcal A \times \mathcal A$ is semiregular then $\mathcal A$ is congruence modular at 0. (English)
Keyword: regularity
Keyword: modularity
Keyword: semiregularity
Keyword: modularity at 0
MSC: 08A30
MSC: 08B10
idZBL: Zbl 1011.08002
idMR: MR1905440
.
Date available: 2009-09-24T10:51:28Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127721
.
Reference: [1] S. Bulman-Fleming, A. Day and W. Taylor: Regularity and modularity of congruences.Algebra Universalis 4 (1974), 58–60. MR 0382118, 10.1007/BF02485707
Reference: [2] I. Chajda: Locally regular varieties.Acta Sci. Math. (Szeged) 64 (1998), 431–435. Zbl 0913.08006, MR 1666006
Reference: [3] I. Chajda and R. Halaš: Congruence modularity at 0.Discuss. Math., Algebra and Stochast. Methods 17 (1997), 57–65. MR 1633236
.

Files

Files Size Format View
CzechMathJ_52-2002-2_9.pdf 271.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo