[2] W. F. Ames:
Nonlinear Partial Differential Equations in Engineering. Academic Press, New York, 1965.
MR 0210342 |
Zbl 0176.39701
[4] A. Anane and J. P. Gossez:
Strongly nonlinear elliptic problems near resonance: a variational approach. Comm. Partial Differential Equations 15 (1990), 1141–1159.
DOI 10.1080/03605309908820717 |
MR 1070239
[6] L. Boccardo, P. Drábek, D. Giachetti and M. Kučera:
Generalization of Fredholm alternative for nonlinear differential operators. Nonlinear Anal. TMA 10 (1986), 1083–1103.
MR 0857742
[7] K. C. Chang:
Variational methods for nondifferentiable functionals and their applications to partial differential equations. J. Math. Anal. Appl. 80 (1981), 102–129.
DOI 10.1016/0022-247X(81)90095-0 |
MR 0614246
[8] D. Costa and C. Magalhaes:
Existence results for perturbations of the p-Laplacian. Nonlinear Anal. TMA 24 (1995), 409–418.
MR 1312776
[9] C. De Coster:
Pairs of positive solutions for the one-dimensional p-Laplacian. Nonlinear Anal. TMA 23 (1994), 669–681.
MR 1297285 |
Zbl 0813.34021
[10] M. Del Pino, M. Elgueta and R. Manasevich:
A homotopic deformation along p of a Leray-Shauder degree result and existence for $(|u^{\prime }|^{p-2}u^{\prime })^{\prime }+f(t,u) = 0$, $ u(0)=u(T)=0$, $p>1$. J. Differential Equations 80 (1989), 1–13.
DOI 10.1016/0022-0396(89)90093-4 |
MR 1003248
[11] A. Friedman:
Generalized heat transfer between solids and gases under nonlinear boundary conditions. J. Math. Mech. 8 (1959), 161–184.
MR 0102345 |
Zbl 0101.31102
[12] Z. Guo:
Boundary value problems for a class of quasilinear ordinary differential equations. Differential Integral Equations 6 (1993), 705–719.
MR 1202567
[13] A. El. Hachimi, J.-P. Gossez:
A note on a nonresonance condition for a quasilinear elliptic problem. Nonlinear Anal. TMA 22 (1994), 229–236.
MR 1258959
[14] S. Hu and N. S. Papageorgiou:
Handbook of Multivalued Analysis Volume I: Theory. Kluwer Academic Publishers, Dordrecht, 1997.
MR 1485775
[15] A. Ioffe and V. Tichomirov:
Theory of Extremal Problems. North Holland, Amsterdam, 1979.
MR 0528295
[17] A. Kufner, O. John and S. Fučík:
Function Spaces. Noordhoff, Leyden, The Netherlands, 1977.
MR 0482102
[18] P. Lindqvist:
On the equation $\div (|Dx|^{p-2}Dx)+ \lambda |x|^{p-2}x = 0$. Proc. AMS vol. 109, 1991, pp. 157–164.
MR 1007505
[19] P. H. Rabinowitz:
Some minimax theorems and applications to nonlinear partial differential equations. Nonlinear Analysis: A collection of papers of E. Rothe, L. Cesari, R. Kannan, H. F. Weinberger (eds.), Acad. Press, New York, 1978, pp. 161–177.
MR 0501092 |
Zbl 0466.58015
[20] P. H. Rabinowitz:
Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS, Regional Conference Series in Math, No 65, AMS, Providence, R. J., 1986.
MR 0845785 |
Zbl 0609.58002
[21] R. Showalter:
Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. Math. Surveys, vol. 49, AMS, Providence, R. I., 1997.
MR 1422252 |
Zbl 0870.35004
[23] E. Zeidler:
Nonlinear Functional Analysis and its Applications II. Springer Verlag, New York, 1990.
MR 0816732 |
Zbl 0684.47029