[1] J. Barros-Neto:
An Introduction to the Theory of Distribution. Dekker, New York, 1973.
MR 0461128
[3] A. T. Bharucha-Reid:
Random Integral Equations. Academic Press, New York and London, 1977.
MR 0443086 |
Zbl 0373.60072
[4] Gh. Bocsan:
A general random fixed point theorem and applications to random equations. Rev. Roumaine Math. Pures Appl. 26 (1981), 375–379.
MR 0627283 |
Zbl 0473.60057
[6] E. Casini and E. Maluta:
Fixed points of uniformly Lipschitzian mappings in spaces with uniformly normal structure. Nonlinear Anal. TMA 9 (1985), 103–108.
MR 0776365
[7] C. Castaing and M. Valadier:
Convex Analysis and Measurable Multifunctions. Springer, Berlin, 1977.
MR 0467310
[9] J. Daneš:
On densifying and related mappings and their applications in nonlinear functional analysis. In: Theory of nonlinear Operators, Proc. Summer School, GDR, Akademie-Verlag, Berlin, Oct.1972 1974, pp. 15–56.
MR 0361946
[10] N. Dunford and J. Schwarz: Linear Operators. Vol I, Interscience, New York, 1958.
[11] W. H. Duren:
Theory of $H^p$ Spaces. Academic Press, New York, 1970.
MR 0268655
[13] K. Goebel and W. A. Kirk:
A fixed point theorem for transformations whose iterates have uniform Lipschitz constant. Studia. Math. 47 (1973), 135–140.
DOI 10.4064/sm-47-2-134-140 |
MR 0336468
[17] T. C. Lim:
Fixed point theorems for uniformly Lipschitzian mappings in $L^p$ spaces. Nonlinear Anal. 7 (1983), 555–563.
MR 0698365
[19] T. C. Lim, H. K. Xu and Z. B. Xu: An $L^p$ inequalities and its applications to fixed point theory and approximation theory. In: Progress in Approximation Theory, Academic Press, 1991, pp. 609–624.
[21] J. Lindenstrauss and L. Tzafriri:
Classical Banach Spaces II—Function Spaces. Springer-Verlag, New York, Berlin, 1979.
MR 0540367
[22] E. A. Lifshitz: Fixed point theorem for operators in strongly convex spaces. Voronez Gos. Univ. Trudy Math. Fak. 16 (1975), 23–28. (Russian)
[23] A. Nowak:
Applications of random fixed point theorems in the theory of generalized random differential equations. Bull. Polish Acad. Sci. Math. 34 (1986), 487–494.
MR 0874895 |
Zbl 0617.60059
[24] N. S. Papageorgiou:
Random fixed point theorems for measurable multifunctions in Banach spaces. Proc. Amer. Math. Soc. 32 (1987), 507–514.
MR 0840638
[25] N. S. Papageorgiou:
Deterministic and random fixed point theorems for single valued and multivalued functions. Rev. Roumaine Math. Pures Appl. 32 (1989), 53–61.
MR 0901435
[26] S. A. Pichugov:
Jung’s constant of the space $L^p$. Mat. Zametki Math. Notes 43 43 (1988 1988), 609–614 348–354. (Russian)
MR 0954343
[28] S. Prus:
On Bynum’s fixed point theorem. Atti. Sem. Mat. Fis. Univ. Modena 38 (1990), 535–545.
MR 1076471 |
Zbl 0724.46020
[29] S. Prus:
Some estimates for the normal structure coefficient in Banach spaces. Rend. Circ. Mat. Palermo XL(2) (1991), 128–135.
MR 1119750 |
Zbl 0757.46029
[35] K. K. Tan and X. Z. Yuan:
Some random fixed point theorems. In Fixed Point Theory and Applications, K. K. Tan (ed.), World Scientific, Singapore, 1992, pp. 334–345.
MR 1190049
[43] H. K. Xu:
Random fixed point theorems for nonlinear uniformly Lipschitzian mappings. Nonlinear Anal. 26 (1996), 1302–1311.
MR 1376105 |
Zbl 0864.47051