Previous |  Up |  Next

Article

Keywords:
span; stable span; manifolds; non-invariance
Summary:
In this note we give examples in every dimension $m \ge 9$ of piecewise linearly homeomorphic, closed, connected, smooth $m$-manifolds which admit two smoothness structures with differing spans, stable spans, and immersion co-dimensions. In dimension $15$ the examples include the total spaces of certain $7$-sphere bundles over $S^8$. The construction of such manifolds is based on the topological variance of the second Pontrjagin class: a fact which goes back to Milnor and which was used by Roitberg to give examples of span variation in dimensions $m \ge 18$. We also show that span does not vary for piecewise linearly homeomorphic smooth manifolds in dimensions less than or equal to $8$, or under connected sum with a smooth homotopy sphere in any dimension. Finally, we use results of Morita to show that in all dimensions $m \ge 19$ there are topological manifolds admitting two piecewise linear structures having different $PL$-spans.
References:
[1] Atiyah, M.: Thom complexes. Proc. London Math. Soc. 11 (3) (1961), 291–310. MR 0131880 | Zbl 0124.16301
[2] Benlian, R., Wagoner, J.: Type d’homotopie et réduction structurale des fibrés vectoriels. C. R. Acad. Sci. Paris Sér. A-B 207-209. 265 (1967), 207–209. MR 0221524
[3] Bredon, G. E., Kosinski, A.: Vector fields on $\pi $-manifolds. Ann. of Math. (2) 84 (1966), 85–90. DOI 10.2307/1970531 | MR 0200937 | Zbl 0151.31701
[4] Brumfiel, G.: On the homotopy groups of ${\mathrm{B}PL}$ and ${\mathrm{P}L/O}$. Ann. of Math. (2) 88 (1968), 291–311. DOI 10.2307/1970576 | MR 0234458
[5] Davis, J. F., Kirk, P.: Lecture notes in algebraic topology. Grad. Stud. Math. 35 (2001). MR 1841974 | Zbl 1018.55001
[6] Dupont, J.: On the homotopy invariance of the tangent bundle II. Math. Scand. 26 (1970), 200–220. MR 0273639
[7] Frank, D.: The signature defect and the homotopy of ${\mathrm{B}PL}$ and ${\mathrm{P}L/O}$. Comment. Math. Helv. 48 (1973), 525–530. DOI 10.1007/BF02566139 | MR 0343288
[8] Husemoller, D.: Fibre Bundles. Grad. Texts in Math. 20 (1993), (3rd edition). MR 1249482 | Zbl 0794.55001
[9] James, I. M., Thomas, E.: An approach to the enumeration problem for non-stable vector bundles. J. Math. Mech. 14 (1965), 485–506. MR 0175134 | Zbl 0142.40701
[10] Kervaire, M. A.: A note on obstructions and characteristic classes. Amer. J. Math. 81 (1959), 773–784. DOI 10.2307/2372928 | MR 0107863
[11] Kirby, R. C., Siebenmann, L. C.: Foundational Essays on Topological Manifolds, Smoothings, and Triangulations. Ann. of Math. Stud. 88 (1977). MR 0645390 | Zbl 0361.57004
[12] Korbaš, J., Szücs, A.: The Lyusternik-Schnirel’man category, vector bundles, and immersions of manifolds. Manuscripta Math. 95 (1998), 289–294. DOI 10.1007/BF02678031 | MR 1612062
[13] Korbaš, J., Zvengrowski, P.: The vector field problem: a survey with emphasis on specific manifolds. Exposition. Math. 12 (1) (1994), 3–20. MR 1267626
[14] Kosinski, A. A.: Differential Manifolds. pure and applied mathematics ed., Academic Press, San Diego, 1993. MR 1190010 | Zbl 0767.57001
[15] Kreck, M., Lück, W.: The Novikov Conjecture, Geometry and Algebra. Oberwolfach Seminars 33, Birkhäuser Verlag, Basel, 2005. MR 2117411 | Zbl 1058.19001
[16] Lance, T.: Differentiable Structures on Manifolds, in Surveys on Surgery Theory. Ann. of Math. Stud. 145 (2000), 73–104. MR 1747531
[17] Milnor, J.: Microbundles I. Topology 3 Suppl. 1 (1964), 53–80. DOI 10.1016/0040-9383(64)90005-9 | MR 0161346
[18] Morita, S.: Smoothability of ${\mathrm{P}L}$ manifolds is not topologically invariant. Manifolds—Tokyo 1973, 1975, pp. 51–56. MR 0370610
[19] Novikov, S. P.: Topology in the 20th century: a view from the inside. Uspekhi Mat. Nauk (translation in Russian Math. Surveys 59 (5) (2004), 803-829 59 (5) (2004), 3–28. MR 2125926 | Zbl 1068.01008
[20] Pedersen, E. K., Ray, N.: A fibration for ${\rm Diff}\,\Sigma ^{n}$. Topology Symposium, Siegen 1979, Lecture Notes in Math. 788, 1980, pp. 165–171. MR 0585659
[21] Randall, D.: CAT $2$-fields on nonorientable CAT manifolds. Quart. J. Math. Oxford Ser. (2) 38 (151) (1987), 355–366. DOI 10.1093/qmath/38.3.355 | MR 0907243 | Zbl 0628.57015
[22] Roitberg, J.: On the ${\rm PL}$ noninvariance of the span of a smooth manifold. Proc. Amer. Math. Soc. 20 (1969), 575–579. MR 0236937
[23] Shimada, N.: Differentiable structures on the $15$-sphere and Pontrjagin classes of certain manifolds. Nagoya Math. J. 12 (1957), 59–69. MR 0096223 | Zbl 0145.20303
[24] Sutherland, W. A.: The Browder-Dupont invariant. Proc. Lond. Math. Soc. (3) 33 (1976), 94–112. DOI 10.1112/plms/s3-33.1.94 | MR 0423367 | Zbl 0326.55013
[25] Varadarajan, K.: On topological span. Comment. Math. Helv. 47 (1972), 249–253. DOI 10.1007/BF02566801 | MR 0321090 | Zbl 0244.57006
[26] Wall, C. T. C.: Classification problems in differential topology - VI. Topology 6 (1967), 273–296. DOI 10.1016/0040-9383(67)90020-1 | MR 0216510 | Zbl 0173.26102
[27] Wall, C. T. C.: Poincaré complexes I. Ann. of Math. (2) 86 (1967), 213–245. DOI 10.2307/1970688 | MR 0217791 | Zbl 0153.25401
Partner of
EuDML logo