Article
Keywords:
sequential convergence; multivalued convergence; lattice; distributive lattice
Summary:
The notion of sequential convergence on a lattice is defined in a natural way. In the present paper we investigate the system $Conv L$ of all sequential convergences on a lattice $L$.
References:
[2] M. Harminc:
Sequential convergences on abelian lattice-ordered groups. Conveгgence structures, 1984. Mathematical Research, Band 24, Akademie-Verlag Berlin (1985), 153-158.
MR 0835480
[3] M. Harminc:
Sequential convergences on lattice ordered gгoups. Czechoslovak Math. J. 39 (1989), 232-238.
MR 0992130
[4] M. Harminc:
The cardinality of the system of all sequential convergences on an abelian lattice ordered group. Czechoslovak Math. J. 57 (1987), 533-546.
MR 0913986
[5] J. Jakubík:
Convergences and complete distributivity of lattice ordered groups. Math. Slovaca 38 (1988), 269-272.
MR 0977905
[6] J. Jakubík:
Lattice ordered having a largest convergence. Czechoslovak Math. Ј. 39 (1989), 717-729.
MR 1018008
[7] J. Jakubík:
On some types of kernels of a convergence l-group. Czechoslovak Math. Ј. 39 (1989), 239-247.
MR 0992131
[8] J. Jakubík:
On summability in convergence l-gгoups. Časopis pěst. mat. 113 (1988), 286-292.
MR 0960765
[9] J. Jakubík:
Sequential convergences in Boolean algebras. Czechoslovak Math. Ј. 38 (1988), 520-530.
MR 0950306
[10] P. Mikusiński: Problems posed at the conference. Proc. Conf. on Convergence, Szczyгk 1979, Katowice (1980), 110-112.
[11] E. Pap:
Funkcionalna analiza, nizovne konvergenciji, neki principi funkcionalne analize. Novi Sad (1982).
MR 0683763