Previous |  Up |  Next

Article

Keywords:
Cartesian product; traces on axes; Mal’tsev conditions; congruence; axis in the product; variety of algebras
Summary:
We give Mal’cev conditions for varieties 4V4 whose congruences on the product $A\times B, A, B\in V$, are determined by their restrictions on the axes in $A\times B$.
References:
[1] B. Csákány: Characterizations of regular varieties. Acta Sci. Math. (Szeged) 31 (1970), 187-189. MR 0272697
[2] B. A. Davey K. R. Miles V. J. Schumann: Quasiidentities, Mal'cev conditions and congruence regularity. Acta Sci. Math. (Szeged) 51 (1987), 39-55. MR 0911557
[3] J. Duda: On two schemes applied to Mal'cev type theorems. Ann. Univ. Sci. Budapest, Sectio Mathematica 26 (1983), 39-45. MR 0719774 | Zbl 0518.08002
[4] J. Duda: Mal'cev conditions for varieties of subregular algebras. Acta Sci. Math. (Szeged) 51 (1987), 329-334. MR 0940937 | Zbl 0647.08002
[5] J. Duda: Diagonal elements and compatible relations in the square of algebras. Czechoslovak Math. Journal (to appear).
[6] K. Fichtner: Varieties of universal algebras with ideals. Mat. Sbornik 75 no. 117 (1968), 445-453. (In Russian.) MR 0222001 | Zbl 0213.29602
[7] G. A. Eraser A. Horn: Congruence relations in direct products. Proc. Amer. Math. Soc. 26 (1970), 390-394. DOI 10.1090/S0002-9939-1970-0265258-1 | MR 0265258
[8] G. Grätzer: Two Mal'cev-type theorems in universal algebra. J. Comb. Theory 8 (1970), 334-342. DOI 10.1016/S0021-9800(70)80086-2 | MR 0279022 | Zbl 0194.01401
[9] J. Hagemann: On regular and weakly regular congruences. Preprint Nr. 75, TH-Darmstadt, 1973.
[10] J. Timm: On regular algebras. Colloq. Math. Soc. János Bolyai 17. Contributions to universal algebra, Szeged (1975), pp. 503-514. MR 0491418
[11] R. Wille: Kongruenzklassengeometrien. Lecture Notes in Mathematics 113 (1970), Springer-Verlag, Berlin. MR 0262149 | Zbl 0191.51403
Partner of
EuDML logo