Article
Keywords:
positive solutions; critical exponent; the $p$-Laplacian
Summary:
We consider the existence of positive solutions of
-\Delta_pu=\lambda g(x)|u|^{p-2}u+\alpha h(x)|u|^{q-2}u+f(x)|u|^{p^*-2}u\eqno(1)
in $\Bbb R^N$, where $\lambda, \alpha\in\Bbb R$, $1<p<N$, $p^*=Np/(N-p)$, the critical Sobolev exponent, and $1<q<p^*$, $q\ne p$. Let $\lambda_1^+>0$ be the principal eigenvalue of
-\Delta_pu=\lambda g(x)|u|^{p-2}u \quad\text{in} \Rn, \qquad\int_{\Rn} g(x)|u|^p>0, \eqno(2)
with $u_1^+>0$ the associated eigenfunction. We prove that, if $\int_{\Bbb R^N}f|u_1^+|^{p^*}<0$, $\int_{\Bbb R^N}h|u_1^+|^q>0$ if $1<q<p$ and $\int_{\Bbb R^N}h|u_1^+|^q<0$ if $p<q<p^*$, then there exist $\lambda^*>\lambda_1^+$ and $\alpha^*>0$, such that for $\lambda\in[\lambda_1^+, \lambda^*)$ and $\alpha\in[0, \alpha^*)$, (1) has at least one positive solution.
References:
[1] C. O. Alves:
Multiple positive solutions for equations involving critical Sobolev exponent in $R^N$. Electron. J.Differential Equations 13 (1997), 1-10.
MR 1461975
[2] C. O. Alves J. V. Gonçalves O. H. Miyagaki:
Remarks on multiplicity of positive solutions for nonlinear elliptic equations in $R^N$ with critical growth. Preprint.
MR 1720590
[3] H. Brezis L. Nirenberg:
Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm. Pure Appl. Math. 36 (1983), 437-477.
DOI 10.1002/cpa.3160360405 |
MR 0709644
[4] P. Drábek Y. X. Huang:
Multiple positive solutions of quasilinear elliptic equations in $R^N$. Nonlinear Anal. To appear.
MR 1691021
[5] P. Drábek Y. X. Huang:
Multiplicity of positive solutions for some quasilinear elliptic equation in $R^N$ with critical Sobolev exponent. J. Differential Equations 140 (1997), 106-132.
DOI 10.1006/jdeq.1997.3306 |
MR 1473856
[7] J. V. Gonçalves C. O. Alves:
Existence of positive solutions for m-Laplacian equations in $R^N$ involving critical Sobolev exponents. Nonlinear Anal. 32 (1998), 53-70.
MR 1491613
[8] P. L. Lions:
The concentration-compactness principle in the calculus of variations, the limit case, Part I, II. Rev. Mat. Iberoamericana 1 (1985), no. 2, 3, 109-145, 45-121.
MR 0850686
[10] E. S. Noussair C. A. Swanson:
Multiple finite energy solutions of critical semilinear field equations. J. Math. Anal. Appl. 195 (1995), 278-293.
DOI 10.1006/jmaa.1995.1355 |
MR 1352823