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Abstract. 'We consider the existence -of positive solutions of
) —Apu = Ag(@)ulPTu + ah(@)ul7 2 + f (@)l P

in RY, where A\,a.€ R, 1 <p < N, p* = Np/(IN.~ p), the critical Soboley exponent, and
1<g<p’,gFp Let Af > 0 be the principal eigenvalue of

o) ~apu= @ kY, [ g >0,
Jry

with u]> 0 the associated eigenfunction, We prove that, if fx Fluf <0, fan hlufjt >
0if1<g<pand fon hiu;"lq < 0if p<'q < p*, then there exist A” > A?’ and o >0,
such that for A € [Xf, A*)-and & € [0, &), (1) has at least one positive solution.
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1. 'INTRODUCTION
We study the existence of positive solutions to the following problem in RY
(11)5 —Dpu = Ag(@)|ul"~?u + oh(@)|ul??u + f(@)|u]? Py,

where Ao € R, 1< p <N, Ayu = div(|Vuff7?Vu) is the p-Laplacian, p* =
Np/(N =p), 1 <q<p*, q#p, f,gand hsatisfy g& # 0, f5F 2 0, ht #0, and
other conditions. The problem is closely related to the following eigenvalue problem,

(1.2), “Apu = Ag()|u 2 i RY, / g{z)|ul?-> 0.
e

It is known that (1:2) has an eigenvalue A > 0 associated ‘with a positive eigen-
function uy (see [6]).

Equations involving critical Sobolev exponents have been studied extensively, and
there exists a large body of literature.” We refer to [5] and the references therein.
Specifically, Swanson and Yu [12] studied (1.1) for the case A € (0,Af).and p< g <
p*. It is shown in [12] that'if g >0, g € LY/P(RY), f > 0,.and h > ho >0 in RY,
then (1.1), has a positive solution if- A € (0,A7). Noussair, Swanson and Yang [11]
investigated the problem

—Apu=p(x)u’ + q(z)e’

on an open connected smooth domain, where 2°<'m < N, m —1 < 7y:<7, and
T+ 1= Nm/(N —m). The existence of at least one positive solution was obtained
for both p and ¢ nonnegative -and satisfying other-local conditions. - More recently
Noussair and Swanson 10] considered

(1.3) —Au = plul"Pu+ glu]’ "2 in RY,

where 2 < 4 < 7= 2N/(N — 2), and showed, under suitable assumptions, including
nonnegativity.of p and g, that (1.3) has two positive decaying solutions. The existence
of two positive solutions of (1.1), was studied for the case p < ¢ <p* and f=101in
[4], and for the case k() = 0 in [5]. Various forms of the equation

(1.4) =Auta(@) P = Bh(@) |t 2+ k(@) |l "2 in RY
are treated by Alves, Gongalves and Miyagaki in (1], [2]:and [7], where g, h and

k are nonnegative, 1 < ¢ # p, ¢ < p*, and 8 > 0. The existence of nonnegative
solutions was obtained via Mountain Pass arguments. Specifically, {1] deals with the
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case 1< g <'p,a=0,k=1;[2) thecase 1 < g < pand 8 =1;and [7] the case
a=0,8="1k=1and 1'<g<p,qg#pp22

Tn this paper we are mainly. concerned with the situation where A > z\f, We
note that, for A"€ (0,A}), the functional fo, (|Vu|” — Aglu|?) is always positive
for u # 0, so one can use a Mountain Pass type argument to show that (1.1)y has
a positive solution. Assuming h > 0.in ‘scme open set in RY, one can even prove the
existence of two positive solutions by first finding a local nonzero minimizer of the
associated functional and then using the Mountain Pass Theorem to find a saddle
point. This is the approach used in [1], [2] and [7}. For A > AT, the situation is
different. “The problem is that in this case, the functional [p, ([Vu? = Aglul?) is
no longer: positive definite. ' Even a local minimizer is difficult to find.  Specifically,
for A > A, fon (IVu]P = Aglul?) -will always approach —cc as [lull = co'in the
direction of uf, while it: can achieve positive values in other directions. For A = /\f,
Jor (I VulP — AglulP) will always be zero in the direction of u. This destroys the
Mountain Pass structure.” Here we use-a procedure devised by Tarantello [13] and
further utilized in [4] and [5]. The conditions

19) L e <o [ onety>o
(16) /‘;N Tlpp<, /w hiu})? <0,

are essential in our presentation.: Under further related local conditions on'g, h-and
f,-wecan prove the existence of positive solutions of (1.1).

Main Result. = Assume (1.5) if1 < g < pand(16) ifp < q < p*. Then there
exist A > A and o >0, such that for any X € [\, ") and o € [0,@"), (1.1), has
a positive solution' (see Theorems 3.8 and 4.7 for precise assumptions on f, g and h).

In our setting, g and h are allowed more flexibility than in [1],:[2) and [7], e.g.,
they may or may not change sign.- But (1.5) forces f to change sign, and (1.6) forces
both.f and h to change sign.. We note that here we need an additional condition
that ‘@ is small enough.- While this is the case for'1 < ¢ < p in [1], [2] and {7],'n0
such smallnegs restriction is postulated to A in [7)-and [12], for the case p < g < p.

This paper is organized as follows: In Section 2 we study the geometric structure
of certain solution manifolds of the associated functional.  Section 3. provides.the
proof of the existence result for thecase 1 <'¢ < p.-The case.p < ¢ < p*is discussed
in Section 4.
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2. GEOMETRY OF ‘THE SOLUTION MANIFOLDS FOR 1.< q<p

‘We collect our basic ‘assumptions and recall some known results. We assume
throughout this paper that 1<'p <N, p*=Np/(N—p), 1. < ¢ <p" and ¢ #p. We
also assume
(80)  g@)=g*(z)=g7(z), 97,97 20, and gt € LR (RY)nLV/P(RY),

97 € Lin.(BY),

(00) k€ L2 (RY)n LOARY); where Q = Np[Np — q(N - p)] .
Let

w(x) , zeRY,

L
T 1 fale
w(z) = max{g” (z),w(z)} >0, € RY.

Let V' be the completion of C5°(RY) with respect to the norm || - || defined by

i =( f1vur+ [ w(z)iul”)w

Here and henceforth the integrals are ‘taken on RY unless otherwise stated.’ Then
V. is a uniformly convex Banach space. In this paper || - ||, will denote the usual L?
norm, and DL?(RY) the completion of C52(RY) with respect to the norm

o = ([ :vw)]"pv

Note that since V- C DVP(RY), a weakly convergent sequence in V' is also weakly
convergent in D*?(RY). By Hardy’s inequality, D*?(R”) is embedded continuously
in LP(R¥,w(z)), so a strongly convergent sequence in DY?(R¥) is also strongly
convergent in L2(RY,w(x)).

Throughout this paper the function f is always assumed to satisfy

(f0): fE #0and f(z) € L2(RY) nCRY).
We have (from Lemma 2.3 of [6]):
Proposition 2.1. - Assume the above conditions are satisfied. Then ‘there exists

2 unique, simple isolated eigenvalue A{ > 0, such that the eigenvalue problem (1.2)
has a positive eigenfunction ui €'V associated with Af.

Next we introduce the following functional
1 a 1. .
2.1 Iu:—/ Vul? = Agluf? ——-/hu"»———/ uff
2.1 A1) == [ (VU = Aglul®) = = [ Blul = 2] flul
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It is clear that the functional I, is well defined on V., -Obviously a critical point of
Iy in -V is a (weak) solution of (1.1)s. We can ‘always assume that critical points of
I, are nonnegative functions since I is an even functional.  For simplicity, we will
assume in the sequel that « > 0, for the case o = 0 has been covered in [5].

Define

B = [V - rglup),
Av={ue Vi Uy(u) i= (I (w),w) = 0}

= {u eV: J,\(u):a/h[u]" +/f|u|p‘}>

(2.2) AT = {u€ Ay (T (u),u) < O}

and

We list the following equivalent expressions of this set.
85 ={ueriG-anw <o -0 [ o'}
23) ={uer o' -paw > v —a) [ b}
~{uemiot-0 [mur <@ -p) [ 1P},
We note that it is not entirely clear whether AT is nonempty for general g,"h and

f.-To show that Ay # @, we introduce other conditions on g, f and h.

(f1) - £(0) = || flloc and for some 7 >0, f(z) > 0 for = € B(0,2r),
(h1) " A(z) 3 ko > 0 in B0, 2r),
(1) g(2) 2 90 > 0in B(0,2r).

Lemma 2.2, Suppose (£0), (f1), (g0), (g1), (h0) and (h1) hold. Then for A > 0
in any:-bounded interval, there exists oy > 0 such that A5 s § provided:o- € (0,01).
Proof. Define, fore >.0,

»(z) o) = ue{z)
(e+Jafp/m YW =p)/p2 0T g (3)]e
where 1 € C§2(B(0,2r)) is such that 0 < () < 1 and ¢(z) = L.on B(0,r).
Consider for ¢ >0,

ue(T) =

() = 0 (w) - ot [ Bluft = [ fiul
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Let-so{t) = ot? — abl? — ct?" with @ =J5(0,), b = [hlvel® and ¢ = [ flue 7. Tt
is clear that b >0, ¢ > 0, By continuous -dependence- of the principal eigenvalue
on the domain, a > 0.for'e > 0.small enough. Fix this e s0.a, b, ¢ are fixed and
let o vary. - One.easily sees that s, (¢) = —oo as t - oco. ‘Moreover, as b =0,
Salt) = sp(t) = at? — ct?’ in.C1 with respect to 1. Let to be such that so(tp) =0
and so(t) >0 for ¢ < L. Then s{{tp) < 0. By C* convergence of s, to sq, we easily
conclude that there exist ap-> 0 and 7 > 0, such-that if 0 < @ < 01, 5a(ta) =0
and 5! (1,) < 0-for some to € (tg —7;t0 +7), that is, tove € AT, This completes the
proof. ]

Next we study the geometry of the set AT for A > 0. We will seek a critical point
of Iy on AT Observe that forany w € Ay,

N A y
In(u) = N/f!u] +a(p q)/h[u]
1 1001
—— — B q
= NJ,\(u) cr(q p*)/h(ul .
We also assume that [juf ]| = 1.
The next Jemma requires the following conditions.
(f2) [ fluhHr <.
m2) [ h(u)T >0

(2.4)

Lemma 2.3.77 Assume p > ¢, (f0), (f1);:(12), (g0), (g1); (h0), (h1) and (h2)
hold.” “Then there -exist-A* > /\i‘L and as > 0 with ¢y < oq,-such that for any
A€ (0,A7), there exists o > 0, such that for any A € (A0 and o € (0,a2), we
have Jy (u). > ollul|P-for any u € AT

Proof. We argue by contradiction. Suppose there exist A, -, ‘and un € /
such that

P 1
(2.5) =0, A= AENA] T () < ol
‘We explicitly note that here AT also depends on ay,.. Letw, = i/ [Jun. - Without

loss of generality we may assume v, — vy weakly in V. Then we have [gT|v,|[? —
[ g [vo]P by compactness. We.then derive by weal lower semicontinuity of the norm

that
0< /|va|”—:\/g+|vu[”+X/g'[vU]”
(2:6) < liminf( / Vol = A L g oal” + A g‘lvnl”)
n-roo

1
=liminf Jy () < lim ~=0.
n—roo neroo
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There are two possibilities: (1) vy = 0,"and (2) vo = kuj for somek # 0, and
A= M T v = 0,4t follows from (2.6) that Vv, [ — 0.and [g7|v.|P = 0. Thus
v, = 0in V; contradicting v, | '= 1. I vg = kuf for some k # 0, and A= Af, then
we have, by the weak convergence of v, to kuj and (2.6),

A [t = [U9ka P+ 3fy it i)
Sliminf/ Vo, 2 4 liminf An f g7, |7
Avoo nmoo
imi il N o P
<t [(Tol + 0o funl?)
= 711320A,L/g'* fon]? = Af /y‘ w1
It then follows that
1iminf/[\7'un§”:/IV"»‘UHP, limiuf/g"[v,,}” = /g"|kul” 2.
noroo R0 :

We deduce that (passing 10 a subsequence if necessary) v, — ku{ strongly in V.. We
then derive from (2.3) that

7 m —p* 5 P-q * =9 Ly, 1P
2. (unllP72 Iy, (vn <"—/fvnp —r‘-—/ ful P < 0.
( ) I “ 2 (va) v-q. i ’ Py fl 1

This contradicts (2.6) if Ju,||. A 0:0r Jy (u,) > 0. Suppose |ju,]| -+ 0 and
Ia,(un) < 0. It follows from (2.3) that [hlu,|® < 0. Thatis,” [ hlv,|? < 0, which
contradicts (h2). This proves the lemma. D

Remark 2.4. For A € (0, A1), conditions (£2) and (h2) are not needed because
Ja(w) = 0 for all u. Assumptions (f2) and (h2) are introduced to.compensate for the
possibility that:Jy (u) is negative.

Lemma 2.5.. Assume p > ¢, (f0), (f1), (£2), {20), (g1), (h0), (h1) and (h2) hold.
For any X € (0,AF), there exist p > 0-and o > 0 with ® < a2, such that for any
A€ A, € (0,0") andw € AT, we have — (W (u),u) > o.

Proof. We first claim that there exists ¢ > 0, independent of A, such that

llull > ¢ for all u'€ AT If this were not true, then for some u, € AY ', A € A1),
un = 0. Dividing:(2.3)-by |Ju, ||P we obtain, using Lemma 2.3,

@9 0<0 <) <EL [ pin " =7 =0,
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a contradiction, where v, = wun/|lunl
Now, by Young’s inequality-and Lemma 2.3, for any & >0, there exists C¢- > 0
such that
(@), = 0 =) ) — ol — ) [ biup

2 (P = plalull” - e’ =gllille- ful?
> (7 = plo =) = aCu|nH P77
The proof is complete. 0

Corollary 2.6." Under the conditions of Lemma2.5, for any A € (0,A7), there
exists:o*> 0 such that A s a closed:set for A € [X\A*) provided o € (0, "),

3.-PROOF OF EXISTENCE OF SOLUTIONS FOR 1 < ¢:<p

Lemma 3.1.. Assume (f0), (f1),.(£2),-(g0), (g1), (h0), (h1) and (b2) hold. Then
1y -is bounded below on A} for A'€ {0,\*) and o € (0,0*), where o -and \* are
given in Lemma 2.5.

Proof. . Suppose for some u, € A7, [r(u,) = —oc. Then llnll > 00, Since
Un € AT, [ flual? > 0 by (2.3) and Lemma 2.3, Dividing Ix (un) by flua|i* we
obtain from (2.4) that

Iy (un 1 . . 1.1 .
plte) — & ol ol 2 = a (5= 2) [ Hio -l £ <0,

with v, = ua/|luall- 1t then follows that [ flo, 2" - luallP'72 — NE < 0. On the
other hand, dividing

Bw) = [ flonl” o [ bl

by |lu,||P we obtain, using Lemma 2.3,

0<a < hom) = [ Ao [l 2 o [ Bloalt- i = NE<O,

a

a contradiction.: So I is bounded below on Ay
Thus ‘we can define ¢o = inf 1) (u).
AL
Lemma 3.2, Assume (f0), (f1), (£2), (g0), (g1), (h0),.(h1) and (b2) hold. Then

for'any A € (0,\*), a € (0,*), there exists a minimizing sequence {un} C Ay of I
on A5 which converges weakly to a solution u of (1.1).
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Proof. ~ We first show that any minimizing sequence of Iy on A3 is bounded.
Suppose {1,}-is an unbounded minimizing sequence- of 1y on A Dividing T, (un)
by |lua % we conclude that, since Iy (uy) is bounded,  flunl?" " |lu,]| ™% is bounded
by (2.4). Thus Jy(un) - |Junll = is also.bounded by (2.3). Let v, = uy /Nl Then
0 < Ja(va) =0, a contradiction, Thus any minimizing sequence {un} in Ay is
bounded.

Since A7 isa closed set by Corollary 2.6, it follows from Theorem 4.1'and Remark
4.1 of [9] that we can replace {u,} by another minimizing sequence {z,} C A such
that Jlun — zn|l < 1/n, and for any.y € A,

(3.1) L) > In(zn) = Slly = 2.
We want to show that I} (z,) = 0. Choose w, of unit norm so that
(I (z)y wn) 2 B (zn)]] — 0(1)
asn — 00, Tt will suffice to show that
(3.2) LI (zn), Wa ) 0.

For each n, let. gn(t, s) = Wy (tz, — swy). Then g,(1,0) =0 and

Yon = (W) (2n),20) £ O 8L L= 15 = 0.

i

Tt follows from the C'-Implicit Function Theorem that for each n, for small enough
s, there exists t,, € C% so that U, (ts(8)2, — swn) = 0,16, {a(S)2n = swn € Ay and

(3.3) (T4 (2), 200 (0) = (Ph(z0)s w) = 0.

“Since z, is'a bounded sequence, so is || ¥5(z,)]l, and we then conclude from (3.3)
and Lemma 2.5 that

(3.4) t'.(0) is uniformly hounded in n. -
We fix n, and consider vn(8) = tn(5)7n — $Wn — 2n. Since |lwall =1, we have
(3:5) fln ()l < 112 + (1£,(0) + oD zall)
s — 0. Moreover z, € Ay gives (I5(2n), 2n) = 0, 80
(3:6) I (2n) =T (10 (8) 20 —5t2) = (T4 (3n), —vn(8)) +0(vn (5)) = {13 (20). 5n) +-0(5)
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follows from (3,5). By continuity of (¥} (%), u), we have
(U5 (tn(8)2n = s100), 2 (8) 20 = Swn) — (¥} (2n),20) 0
as's —:0. We then conclude from this and Lemma 3.4 that
(A (B (8)2n = SWn)s En(8)2n — 510,) <O

for s:small enough, 50 1,,(s)z, — sw, € A}
Dividing (3.6) by 's and using (3.1) with y = ¢,,(s)z — sw,, and (3.5), we obtain

K (zn)y wad] K718, O)Dllzall) + 0(1).

Letting n -~ oo we conclude that (I} (za), ws) tends to zero by boundedness of z,
and (3.4). This establishes (3.2).

Assume now that z, — u weakly in: V. We have, then, as in the proof of Lemma
3.1 of [5], since T} (zp) —0, that uis a weak solution of (1.1),,i.e.,

= Apu = AghulP2u A+ ahlu|T P+ flult

in-V. This proves the lemma, o
Thus we have obtained a weak solution of (1.1}y." To show that this solution is

nontrivial, we.need some preparation. Let S be the best Sobolev constant, i.e.,

I Vullp:

[

S:inf{ uewgﬂ’(w")\{o}},

and So = SN2FIIENV/P /N Recall the concentration-compactness. principle of
P.L.Lions ([8]).

Proposition 3.3.° Let {u,} converge weakly tow in DVP(RY) such that lu,|?"
and |Vu, | converge weakly to nonnegative measures v-and i on RY respectively:
Then, forsome at most countable set J, we have

@) v =ulf” + 3 vide,;
j€d
(i) 2 |Vul? + 3 niba,;
Jjed.
(i) S <y,
where z; € RY, 8., is the Dirac measure at xj, and v; and y; are nonnegative
constants.
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Lemma 3.4. Assume (10); (f1), (2), (g0), (g1).-(h0), (11) ‘and (h2) hold. For
A€ [0,M%) and a € (0,a"); any minimizing sequence {u,} of Iy on Ay ‘satisfying
In(un) < So either converges strongly to a solution u € A3 ;"henceu # 0, or.converges
wealkly-to a nontrivial solution u € Ay

Proof. “Let {u,} be such a minimizing sequence. We can assume without loss
of generality that {u,} is bounded (cf. Lemma 3.2).

Assume that u, — u weakly in 1. We conclude as in the proof of Proposition 2.3
of [5] that

“Au = AglulP Pu b flult TR+ abfult T

in V', that is, 7{ (u) = 0-and hence u € Ay,

Suppose that u, 7 u-strongly in V' and u = 0. Then for some j, v; given
by Proposition 3.3 is not zero.” We obtain, using the fact that [hlu,|? — 0 (cf.
Proposition 2.3 of [5]);

1 * 1
So > D) = 5 /f[unl” o5~ %1) /nwm

1 1 S¥p
ZN S flaws 2 NZ Fa Vol = S,
j€J Jed J

a contradiction.” Here we used the facts that f(z;)v; = p; and V> (S/f(zj))N/Pﬂ
which follow from the proof of Proposition 2.4 of [3]. This proves the lemma. 0

‘We need ‘more conditions on f: Assume

(13) - for « € B(0,2r),

N N(p-1) N- Np-1)
)= £(0) +olal®), k= —ifgp it pm Py TP T
F(@) = £(0) +of|«/*) Fiee o b= o= Rugc =

or
(£3)" for z.€ B(0,2r),
1) = £0) +ofel’), 5= N2
P

Lemma 3.5, Assume (f0), (f1), (£2), (3) or- (83", (g0), (g1), (h0) and (h1) hold.
Then for A:>0, and € >0 small-enough, we have

1 -
(3.7) sup I (tve) < VRGN = s,

£

where v, is given'in the proof-of Lemma 2.2.
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Proof. Ourproof is similar to that of Lemma 4.1 of [12]. Recall for & >0,

¥(z) )

. 5(
) = e ) =

where ¥ € C5°(B(0,2r)) is such that 0 < ¢(z) € 1 and%(z) =1 on B(0,7).
Calculations show that (cf. the proof of Lemma 5.6 in [5])

KeWNp-tto)o=1)/pt = jf s pt
o

38 v lt= { KeNo-D/P | Inel, ift=12
5

KetN=p)/?*, ift<i,
and

KieNG=00-0/F,if ¢ M=)
(3.9) / [Voelt = { etN=p)/e|Ine], i = Mp=h)

Kreun=p)/p%, if < M=l
In particular, we have

KeW-p)/p?, ifp> 2%,

(3.10) /lvel ={ KeW=-n)/p?|In¢], ifp= 20,

Ke(Np=1)+0)e-D/% =iy o A
KePTt P2 <N,
(3:11) /h,slp < ) gertmel PN
JeWNRP, g2 > N

/vf' =1,

K1 (N~p)/7", ifp> =L
(3.12) |Vve) = { Kero(v=p)/7°| Ine], ifp= 2L
£
1(:51\/(1:—1)2/?’, ifp< g,\,:—‘-,
(3.13) /.IV'Uell"“ = K%(N“F)(P—J)/m’
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and

(3.14) / Vol = %’%P = -I;;—; +()(5(N—P)/p)_’

where K1 /K> ='S.
Note that for € > 0 small enough, Jx(ve) > 0, so I (tv,) attains its maximum at
some 1. € (0,00) with s'(t;) = 0, where 8(t) = Ix(tv.). That is,

o=s'(z5)=z§**(/(1vvg1v-xggu5|ﬁ) —atﬁ"’/h\vs("-tg’"”/f[usip').

Thus, by (g1) and (h1),
P _lﬁlvvg P
ST ) flel !

where f(z*) = inf " f(z) > 0. It then follows that t, is bounded from above. We
=€B(0,r)

may also assume that t. is bounded from below, otherwise Iy(t.ve) — 0-as e = 0.
Now,

(3.15) In(teve) = sup In(tve) = E(e) — F(e) + V(e),
120

(ot o O
E(a):;/IVvEI’—J—p}*—/vg’,
a2 #

Fle :-—’5/ v”+a~5/hv3,

(¢) ) Etey

4 :
Ve =% [ - s
The maximum of ap™'#? — b(p*) 7 ¢?" is achieved at t = (a/b)N=»)/P* for positive

a,b,so

11 (=M)/p Merr el ny/
5@ < (5~ ) uone= [ [rvnr] [ fur] T = Lo
We also have, for k and 4 given in (£3) and (f3)’ respectively,
Ve = 0(eMp-D/r) - O(efe-1)/py.
Assuming (£3) holds, we estimate, using the fact that ¢, is.bounded from below,

KelVe-a+ale-1/2  jr g __(ENN -1
=P

Fle) 2 ahg /ug ={ KeNe=1/7|Ing|, ifg= H[tvi_—;l).,
KeaN-p)/»* ifg< %(]2:_12
-P
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From (f3) we derive that for'e > 0 small enough, F(¢) dominates V(¢).” Thus we
conclude from the above that, for e > 0 small enough and & >0,

Sp = KeNe=altarlp=1)/p" = if ¢ > %&y

(3.16) Ia(teve) < 4 So = KeNw=0/9*|ing), if g = =l
So = Ked=p)/p", if g < %P:;ll

On the other hand, assume (f3)’ holds. " We have
, Kerml, ifpt <N,
F(e) 2 g0 / V= ¢ KeP~YIneg|, “if pP= N,
KeWNrp)/p iif p2 50N,

Since p— 1 < (N~ p)/pfor p> < N and §(p—1)/p > (N ~p)/p for p? > N by (13)",
F(e) dominates V(e). ‘Again we have

So— Ker=1, if p? < N,
(3.16)" Li(teve) £ 450 — Ke?7 gl if PP =N,
So— KeWon/p, if p2 > N,

The lemma then follows. [m}

Lemma-3.6. - Assume (f0), (f1),(£2), (£3) or (£3)’, (g0), (g1), (h0), (h1), (h2),
and A and o as in-Lemma 2.5, Then ¢o = inf I, (u) < Sp.
A

This lemma follows from Lemma 3.5 and the fact that t.v- € A} for some t. >0
(cf. the proof of Lemma 2.2). -Thus we have proved, via'Lemmas 3.4 and 3.6,
the existence of a nonnegative solution. The next result. shows that the solution is
actually positive.

Proposition'3.7. - Let u-be a nonnegative solution of (1.1)x with ¢ < p*. Then
u>0in RY.

The proof is essentially as that of Lemma 4.3 of [12] and is omitted.
Now 'we can state our main result,

Theorem 3.8. Assume that (f0), (f1), (£2), (£3) or (£3)’, (50),(g1), (h0), (h1),
and (h2) hold, Then there exist A* > A} and o* > 0, so.that the problem

—Ayu = Ag(@)|ul?™2u + ah(@) ) 2w+ f)ulP T2

has at least one positive solution in V- for any A€ [\, A*) and a € (0, a*).
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4. THE CASE p <'g <'p* AND SOME REMARKS
For this case, the set. Ay is defined as in (2.3). We first have the following result.
Lemma 4.1, Assume supp f ¥ supp bt contains an open set. Then A5 # 0 for
A>0.

Proof.- Suppose supp f M supp it contains an open set B and let ¢ > 0 be
such that supp ¢ C.B with Jy(¢) > 0. Such:¢ exists as explained in the proof of
Lemma 2.2, For:t >0, we have

Wtp) = () —at® [ gt =0 [ for

Let again s(t) = at? — abt? — a? with a = J(p). >0, b = Jhe? >0 and
c= [ fp?" > 0. Obviously s(t) > 0 for t > 0 small and s(t) = —oo as't = co.
Suppose s(tp) = 0. Then

s'{to) = 4 (patl ™0 — agb — piet] 7Y)
=18 falp~ )b — (" = p)eth 7] <0
since p <-¢. That is, top € A} . This concludes the proof. 0

Remark 4.2. Note that (f1) and (h1).imply that supp f* Nsupp k't contains an
open set.  So we. will-assume for simplicity in the sequel that (f1) and (h1) hold. We
also note that Lemma 4.1 holds if A= 0.

Instead of (h2), we need
2y [hlufle<o.

. 'Lemma'4.3. " Assume ({0), (f1), (2), (g0), (g1), (h0), (b1) and (h2)" hold. Then
there exist A} > )QL and a; >0 such that for any X € (0, AT), there exists a > 0,
such that for any A € [A\,A}) and '€ (0,01), Ja(u) > allull® for anyu € Ay

Proof. - If the conclusion were false, there would exist An, o, and u, € AT
such ‘that L
@ 0,0 M= R AT]L () < = lunll?.

As in the proof of Lemma 2.3, we conclude that v, = un/lltnll — kuf for some
k #.0. Then instead of (2.7) we have

o Pr-q - Pt —q .
4.1 N e ,.>—~——/fv,.”‘+~w~/fku“‘” >0,
(42) o uall An (Un) prpags [vn] Py [feur |
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since p <q and [ flkuF | < 0 by (£2). If lunll # 0, then (4.1) contradicts the fact
that Jy, (vn) = 0.Tf lunl| = 0, (4.1) implies that J5 (v,) > 0."We then have

2. on / hjoal? + / Foal?” - JunllP' 7%= Iy o) - Jun] P77 > 0.
Note that [ flual?” - lun]i?’ =% ~ 0 since |[uall = 0. Inequality (4.2) then implies
Jhlval? > 0, contradicting:(h2)'. Thus the lemma is proved. 0

Remark 4.4. We point out that Lemma 4.3 holds if h =0.

The reason is that instead of (4.2), we now have

(12) [ 1100 uall 7 = I () 0.
This leads to a.contradiction again.

Lemma 4.5. " Assume that (0), (f1), (£2), {g0), (g1), (h0), (h1)-and (h2)" hold.
Then for ) € (0,A") and o € (0, 1),
(1) La(u)>0foranyue Ay,
(1) “any minimizing sequence of I on A} is uniformly bounded.

Proof. We observe that, foru € A}, from (2.4) and Lemma 4.3,

(4.3)

1. pt—p q-p
> [— v“*qu*«']-h(u) = —JV-'q-J’\(u) 2

4P walie
Lol

Since ¢-only depends.on @y ‘and A*, the conclusions then follow directly. This com-
pletes the proof. ]

Now, by Lemma 4.5, there exists R >0, so that for any e €(0,a;) and A € (0,\*),
for any minimizing sequence {u,} C A} of Iy (here Iy also depends on @), we can
assume that, by taking a subsequence if necessary, Jlunll € R. Define Up = {u €
Vi lull < R}

Lemma 4.6. = Assume (f0), (1), (£2), (g0), (g1), (h0), (h1) and (h2)' hold. For
any X:€ (0,\]), there exist o > 0 and.o* with " < oy, such that for any A € [, \*),
a € (0,0%) and u € Ay NUsp, —(¥)(u),u) > o

Proof. = We first show that for some 1 >0, depending only on a; and A\*,
llull 2 7 for w € Ay, Indeed, if for some un € Ay, U, — 0, then we have, by
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Lemma 4.3,
0< o< m) =a [ Hunlt a2 4 [ flnl” -l 0,

a contradiction, where vy, = tn/l[unll-
Using Lemma 4.3 we get
(B ),) = (7 = D)) — o = o) [ Al

2 (0" = p) s = al” - 9)lklg - lull’
2 (= plon’ — a(p ~ g)||blle2R)* > ¢ >0,
for a small encugh. The lemma is proved. ]

Lemma 4.6 implies that AT NUsp is a closed set (in fact one can prove that A7 is
a closed set), Replacing AT by Ay'NUzg, and noting that any minimizing sequence
in Ay N Uszr will be a positive distance from the boundary- |jul| = 2R, we can check
straightforwardly that the proofs of Lemmas 3.2, 3.4, 3.5, and 3.6 remain valid. So
we can state our result.

Theorem 4.7, ~ Assume that (0), (1), (f2), (£3) or (3)’, (g0), (g1}, (h0), (h1),
and (h2)' hold. Then there exist \* > Af and * > 0, such that for any-A € [A\]",\*)
and o €(0,a*), the problem

~ Ay = Ag(@)ulP~u 4 ah(z)|ul?=2u + f(a)ul? "2
has at least one positive solution in 'V,

Remark 4.8. As we remarked earlier, for A € (0, )\fL)w Theorems 3.8 and 4.7 hold
without the integral conditions (£2), (h2) and (h2)’, and can be proved via Mountain
Pass argument. Cf. (1], 2], [7] and [12].

: Remark 4.9, ‘We note that the proofs are applicable to Dirichlet problems on
bounded domains and similar results hold. ‘We can also deal with

—Aput a(@)[uP?u = Ag(x)|uP?u + ah(@)ul*2u + f (€)[ulP "2
in RY, where a(z) € L (RY), a(z) 2 0.

Remark 4.10. Similarly, one-can consider the negative principal eigenvalue
A7 < 0 given by

~Ayu = Mg(n)|ulP7?u - in RY, fg(x)[u|” <0,

Existence of positive solutions of (1.1) for'A <:0.can be obtained provided conditions
similar-to (£2), (h2) and (h2)’ hold.
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