Previous |  Up |  Next

Article

Keywords:
fuzzy bitopological spaces; pairwise fuzzy connectedness; $(i,j)$-fuzzy clopen
Summary:
In this paper the concept of fuzzy connectedness between fuzzy sets is generalized to fuzzy bitopological spaces and some of its properties are studied.
References:
[1] G. Balasubramanian: Fuzzy disconnectedness and its stronger forms. Indian J. Pure Appl. Math. 24 (1993), no. 1, 27-30. MR 1203246 | Zbl 0785.54005
[2] C. L. Chang: Fuzzy topological spaces. J. Math. Anal. Appl. 24 (1968), 182-190. DOI 10.1016/0022-247X(68)90057-7 | MR 0236859 | Zbl 0167.51001
[3] U. V. Fetteh D. S. Bassan: Fuzzy connectedness and its stronger forms. J. Math. Anal. Appl. III (1985), 449-464. MR 0813222
[4] M. H. Ghanim E. E. Kerre A. S. Mashhour: Separation axioms, subspaces and sums in fuzzy topology. J. Math. Anal. Appl. 102 (1984), 189-202. DOI 10.1016/0022-247X(84)90212-9 | MR 0751352
[5] A. Kandil: Biproximities and fuzzy topological spaces. Simon Stevin 63 (1989), 45-46. MR 1021455
[6] S. N. Maheshwari S. S. Thakur, Rita Malviya: Conectedness between fuzzy sets. J. Fuzzy Math. 1 (1993), no. 4, 757-759. MR 1249187
[7] M. N. Mukherjee: Pairwise set connected mappings in bitopological spaces. Indian J. Pure Appl. Math 16 (1989), no. 9, 1106-1113. MR 0864150
[8] P. M. Pu Y. M. Liu: Fuzzy topology 1, Neighbourhood structure of a fuzzy point and Moore Smith convergence. J. Math. Anal. Appl. 76 (1980), 571-599. DOI 10.1016/0022-247X(80)90048-7 | MR 0587361
[9] S. S. Thakur, Annamma Philip: Connectedness in fuzzy bitopological spaces. Epsilon J. Math. (Submitted).
[10] L. A. Zadeh: Fuzzy sets. Inform. and Control (Shenyang) 8 (1965), 338-353. DOI 10.1016/S0019-9958(65)90241-X | MR 0219427 | Zbl 0139.24606
Partner of
EuDML logo