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Abstract. In this paper the concept of fuzzy connectedness between fuzzy sets [6] is 
generalized to fuzzy bitopological spaces and some of its properties are studied. 
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1. PRELIMINARIES 

Let X and Y be non-empty sets. A fuzzy set A in X is a mapping from X to 

the unit interval [0,1]. The null fuzzy set 0 (resp. the whole fuzzy set 1) is the 

mapping from X to the unit interval [0,1] which takes the only value 0 (resp. 1) in 

that interval. The basic operations on fuzzy sets are defined as follows: 

| J Xa(x) = supAQ(:r), V.x 6 X, 
ceA a e A 

f ) K(x) = inf Xa(x), V r e X , 
1 ' QGA 

cgA 

l\A(x) = l -A(z) , Vre X. 

A fuzzy topology [2] on X is a family r of fuzzy sets in X which satisfies the 

following conditions: 

(a) 0,1 e r , 
(b) X,n e T => Af1(i 6 T, 

(c) for each a 6 A, AQ 6 T =J> [j Xa e T. 
t»SA 

The pair (X, T) is called a fuzzy topological space and the members of T are called 

fuzzy open sets. The complements of the fuzzy open sets are called fuzzy closed sets. 

The closure denoted by cl(A) (interior, denoted by int(A)) of a fuzzy set A of X is the 
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intersection (union) of all fuzzy closed supersets (fuzzy open subsets, respectively) 

of A [2]. For a fuzzy set A of a fuzzy topological space X, 1 - int(A) = cl(l - A) and 

1- cl(A) = int( l — A). A fuzzy set A in X is said to be quasi-coincident [8] with a fuzzy 

set n in X denoted by A q /i if there exists a point x 6 X such that \(x) + fi(x) > 1. 

If A and fj, are two fuzzy sets of X, then A ^ /J if and only if A and 1 — fi are not 

quasi-coincident. A fuzzy topological space (X, T) is said to be fuzzy connected [3] 

if there is no proper fuzzy set in X which is both fuzzy open and fuzzy closed. A 

fuzzy topological space (X, r) is said to be fuzzy connected [6] between its subsets A 

and fi if and only if there is no fuzzy closed fuzzy open set 5 in X such that A ^ 6 

and ->(6 q n). 

A system (X,TX,T2) consisting of a set X with two topologies ri and r2 on X is 

called a fuzzy bitopological space [5]. A fuzzy bitopological space (X,T\,T2) is said 

to be pairwise fuzzy connected [8] if it has no proper fuzzy set which is both T;-fuzzy 

open and T,-fuzzy closed, i,j = l,2,i^t j . The purpose of this paper is to introduce 

and study the concept of pairwise fuzzy connectedness between fuzzy sets in fuzzy 

bitopological spaces. 

Throughout this paper i,j = 1,2 where i ^ j . If P is any fuzzy topological property 

then Ti-P and Tj-P denote the property P with respect to the fuzzy topology Ti and 

Tj, respectively and XA denotes the characteristic function of a subset A of X. 

2. PAIRWISE FUZZY CONNECTEDNESS BETWEEN FUZZY SETS 

Defin i t ion 2 . 1 . A fuzzy bitopological space (X,T\,T2) is said to be pairwise 

fuzzy connected between fuzzy sets A and n if there is no (i, j)-fuzzy clopen (n-fuzzy 

closed and T^-fuzzy open) set 6 in X such that A ^ S and -i(<5 q /t). 

R e m a r k 2.1. Pairwise fuzzy connectedness between fuzzy sets A and fi is not 

equal to the fuzzy connectedness of (X, TI) and (X, T2) between A and /J. 

E x a m p l e 2.1. Let X = {a,b} and let A, /t, vx and v2 be fuzzy sets on X 

defined as follows: 

\(a) = 0.2, A(6) = 0.3, 

fi(a) = 0.5, n(b) = 0.4, 

v1(a)=0.3, ^ ( 6 ) = 0.4, 

v2(a)=0.7, v2(b) = 0.6. 

Let Tx = {0, vi, 1} and T2 = {0, v2,1} be fuzzy topologies on X. Then (X, TI ) and 

(X,T2) are fuzzy connected between the fuzzy sets A and n but ( X , T I , T 2 ) is not 

pairwise fuzzy connected between A and n. 
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E x a m p l e 2.2. Let X = {0,6}. Let fuzzy sets vu i'2,&l,S2, A and p be defined 
as follows: 

1/1(0) = 0 . 5 , 1/1(6) = 0.6, 

1/2(0) = 0.5, i/2(6) = 0.7, 

5 i ( o ) = 0 . 5 , 5i(6) = 0.4, 

S2(a) = 0.5, S2(b) = 0.3, 

A(o) = 0.5, A(6) = 0.3, 

p(a) = 0.5, n(b) = 0.2. 

Let Ti = {0 , i / i ,d i , l} and r2 = {0,1/2,($2,1} be fuzzy topologies on X. Then the 

fuzzy bitopological space (X,T\,T2) is pairwise fuzzy connected between A and p, 

but neither (X,T\) nor (X, r2) are fuzzy connected between A and p. 

T h e o r e m 2 .1 . A fuzzy bitopological space (X, Ti, r2) is paiiwise fuzzy connected 

between fuzzy sets A and u- if and only if there is no (i,j)-fuzzy clopen set S in X 

such that A ^ S ^ 1 - p. 

P r o o f . Obvious. O 

Theorem 2.2. If a fuzzy bitopological space (X,T\,T2) is pairwise fuzzy con­

nected between fuzzy sets A and p then A and p are non-empty. 

P r o o f . Evident. D 

Theorem 2.3 . If a fuzzy bitopological space (X,T\,T2) is pairwise fuzzy con­

nected between fuzzy sets A and p and if A ^ Ai and p < p\ then (X,T\,T2) is 

pairwise fuzzy connected between \\ and p\. 

P r o o f . Suppose the fuzzy bitopological space (A' ,TI ,T 2 ) is not pairwise fuzzy 

connected between the fuzzy sets Ai and p i . Then there is an (i, j)-fuzzy clopen set 

S in X such that Ai ^ S and ->(S q p i ) . Clearly A ^ 5. Now we claim that ->(S q n). 

If (($ q u) then there exists a [joint x e X such that S(x) + n(x) > 1. Therefore 

S(x) + fi\ (x) > S(x) + ii(x) > 1 and 5 q p i , a contradiction. Consequently, (X, T\,r2) 

is not pairwise fuzzy connected between A and p. O 

T h e o r e m 2.4 . A fuzzy bitopological space (X, T\,T2) is pairwise fuzzy connected 

between A and jx if and only if it is pairwise fuzzy connected between r;-cl(A) and 

r r c l ( p ) . 

P r o o f . Necessity: It follows by using Theorem (2.3). 
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Sufficiency: Suppose the fuzzy bitopological space {X,TI,T2) is not pairwise fuzzy 

connected between A and fi. Then there is an (i, j)-fuzzy clopen set <5 in X such that 

A <. S and ->(<5 q n). Since A ^ <5, T - C I ( A ) <_ T;-cl(<5) < <5 because <5 is T-fuzzy closed. 

Now, 

-<{5 q n) => <5 <. 1 - u. 

=> <5 <. Tj-int(l - n) 

=>(5<1-T , -C l ( / . ) 

=.>->(<$ qT-c l ( / i ) ) . 

Hence X is not pairwise fuzzy connected between T;-cl(A) and T,-C1(/»), a contra­

diction. D 

Theorem 2.5. Let {X,TX,T2) be a fuzzy bitopological space and Jet A and /J be 

two fuzzy sets in X. If A q /x tJien {X,TX,T2) is pairwise fuzzy connected between A 

and /i. 

P r o o f . If <5 is any (i, j)-fuzzy clopen set in X such that A $ <5 then A q p = > 

Sqfi. D 

R e m a r k 2.2. The converse of Theorem (2.5) may not be true as is shown by 

the next example. 

E x a m p l e 2.3. Let X = {a, b} and let the fuzzy sets A, /t, <5i and <52 be defined 

as follows: 

\(a) = 0.5, \{b) = 0.4, 

u{a) = 0.3, /jt(b) = 0.5, 

<5,(a)=0.2, <5i(6) = 0 . 9 , 

<52(a)=0.8, <52(6)=0.1. 

Let T; = {0,SX, 1} and T2 = {0,<52,1} be fuzzy topologies on X. Then the fuzzy 

bitopological space {X,n,T2) is pairwise fuzzy connected between A and u. but 

-.(Aq/x). 

Theorem 2.6. If a fuzzy bitopological space (X,TI,T2) is pairwise fuzzy con­

nected neither between A and /j,, nor between A and fix, then it is not pairwise fuzzy 

connected between A and /to U fi,x. 

P r o o f . Since X is pairwise fuzzy connected neither between A and fi0 nor 

between A and /ii , there exists (i,j)-fuzzy clopen fuzzy sets <50 and <5i in {X,TX,T2) 

such that A <. <50, -i(<50 q / J 0 ) and A <. <5i, ->(<5i q fix). Put <5 = <50 n <5i. Then <5 is 
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(i,j)-fuzzy clopen and A ^ <5. Now we claim that -i(<5 q (po U p i ) ) . If <5 q (p0 U pi) 

then there exists a point x e X such that 5{x) + (po Upi) (x) > 1. This implies that 

<5 q po or <5 q p i , a contradiction. Hence X is not pairwise fuzzy connected between 

A and p 0 U p i . D 

T h e o r e m 2.7. A fuzzy bitopological space {X, i\, Ti) is pairwise fuzzy connected 

if and only if it is pairwise fuzzy connected between every pair of its non-empty fuzzy 

subsets. 

P r o o f . Necessity: Let A and p be any pair of non-empty fuzzy subsets of X. 

Suppose {X,TI,T2) is not pairwise fuzzy connected between A and p. Then there is 

an {i, j)-fuzzy clopen set <5 in X such that A < <5 and -i(<5 q p). Since A and p are 

non-empty, it follows that <5 is a non-empty proper (i, j)-fuzzy clopen subset of X. 

Hence {X,TI,T2) is not pairwise fuzzy connected. 

Sufficiency: Suppose (X, n, r2) is not pairwise fuzzy connected. Then there exists 

a non-empty proper {i, j)-fuzzy clopen subset <5 of X. Consequently, ( X , T I , T 2 ) is not 

pairwise fuzzy connected between <5 and 1 — <5, a contradiction. D 

R e m a r k 2.3. If fuzzy bitopological space (X, TI , r2) is pairwise fuzzy connected 

between a pair of its subsets then it need not necessarily hold that ( X , T I , T 2 ) is 

pairwise fuzzy between every pair of its subsets and so it is not necessarily pairwise 

fuzzy connected as is shown by the next example. 

E x a m p l e 2.4. Let X = {a,b} and let <5i, <52, Ai, A2, Pi and p 2 be defined as 

follows. 

<5i(a) = 0.4, <5i(6) = 0.6, 

<52(a) = 0.6, <52(6) = 0.4, 

Ai(a) = 0.7, A i (b )=0 .8 , 

A 2 ( a ) = 0 . 3 , A 2 (b)=0 .2 , 

Pi(a) = 0.8, p i ( 6 ) = 0 . 7 , 

p2(a) = 0.2, p2(6) = 0.3. 

Le t r i = {0,<5i, l}andr2 = {0,<52,1} be two fuzzy topologies o n X . Then ( X , n , r 2 ) 

is pairwise fuzzy connected between A, and p, but it is not pairwise fuzzy connected 

between A2 and p 2 . Also ( X , T I , T 2 ) is not pairwise fuzzy connected. 

T h e o r e m 2.8. Let (Y, ( r i )y , {T2)Y) be a subspace of a fuzzy bitopological space 

(X, TI , r2) and let A, p be fuzzy sets ofY. If (Y, ( r i )y , {T2)Y) is pairwise fuzzy con­

nected between A and p then (X,Ti , r 2 ) is aiso pairwise fuzzy connected between A 

and fx. 

P r o o f . Evident. D 
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T h e o r e m 2.9. Let (Y, (T\)Y , (T2)Y) be a subspace of a fuzzy bitopological space 

(X,TI,T2) and let A, p be fuzzy sets ofY. If (X,T\,T2) is pairwise fuzzy connected 

between A and u. and XY is bifuzzy clopen in (X,n,T2) then (Y,(TI)Y,(T2)Y) is 

pairwise fuzzy connected between A and p.. 

P r o o f . Suppose (Y, (T^Y, (T2)Y) is not pairwise fuzzy connected between A and 

p then there exists an (i, j)-fuzzy clopen set 8 in X such that A ^ S and -i(A q <5). 

Since XY is bifuzzy open and bifuzzy closed in (X,T^,T2), <5 is (i, j)-fuzzy clopen in 

( X , T I , T 2 ) . Therefore ( X , T I , T 2 ) is not pairwise fuzzy connected between A and p, 

which is a contradiction. • 
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