Previous |  Up |  Next

Article

Keywords:
linear mapping; axonometry; singular values
Summary:
We show that a central linear mapping of a projectively embedded Euclidean $n$-space onto a projectively embedded Euclidean $m$-space is decomposable into a central projection followed by a similarity if, and only if, the least singular value of a certain matrix has multiplicity $\ge2m-n+1$. This matrix is arising, by a simple manipulation, from a matrix describing the given mapping in terms of homogeneous Cartesian coordinates.
References:
[1] Brauner H.: Zur Theorie linearer Abbildungen. Abh. Math. Sem. Univ. Hamburg 53 (1983), 154-169. DOI 10.1007/BF02941317 | MR 0732814 | Zbl 0519.51003
[2] Brauner H.: Lineare Abbildungen aus euklidischen Räumen. Beitr. Algebra u. Geometrie 21 (1986), 5-26. MR 0839966 | Zbl 0589.51004
[3] Brauner H.: Zum Satz von Pohlke in n-dimensionalen euklidischen Räumen. Sitzungsber. österreich. Akad. Wiss., Math.-Natur. Kl. 195 (1986), 585-591. MR 0894185
[4] Havel V.: On decomposition of singular mappings. (In Czech). Časopis Pěst. Mat. 85 (1960), 439-446. MR 0126456
[5] Paukowitsch P.: Fundamental ideas for computer-supported descriptive geometry. Comput. & Graphics 12 (1988), 3-14. DOI 10.1016/0097-8493(88)90003-9
[6] Szabó J.: Eine analytische Bedingung dafür, daß eine Zentralaxonometrie Zentralprojektion ist. Publ. Math. Debrecen 44 (1994), 381-390. MR 1291984
[7] Szabó J., Stachel H., Vogel H.: Ein Satz über die Zentralaxonometrie. Sitzungsber. österreich. Akad. Wiss., Math.-Natur. Kl. 203 (1994), 1-11. MR 1335603
[8] Strang G.: Linear Algebra and Its Applications. Зrd ed. Harcourt Brace Jovanovich, San Diego, 1988. MR 0575349
Partner of
EuDML logo