Article
Keywords:
neutral equation; delayed argument
Summary:
Our aim in this paper is to present sufficient conditions for the oscillation of the second order neutral differential equation
\big(x(t)-px(t-\tau)\big)"+q(t)x\big(\sigma(t)\big)=0.
References:
[1] D. D. Bainov A. D. Myskis A. I. Zahariev:
Necessary aud suffîcient conditions for oscillation of solutions of linear functional differential equations of neutral type with distributed delay. J. Math. Anal. Appl. 148 (1990), 263-273.
DOI 10.1016/0022-247X(90)90043-F |
MR 1052060
[2] D. D. Bainov D. P. Mishev:
Oscillation Theory for Neutral Differential Equations with Delay. Adam Hilger, Bristol, 1991.
MR 1147908
[3] L. H. Erbe Q. Kong B. G. Zhang:
Oscillation Theory for Functional Differential Equations. Dekker, New York, 1995.
MR 1309905
[4] L. H. Erbe Q. Kong:
Oscillation results for second order neutral differential equatious. Funkcial. Ekvac. 35 (1992), 545-555.
MR 1199473
[6] I. Győri G. Ladas:
Theory of Delay Differential Equations with Applications. Clarendon Press, Oxford, 1991.
MR 1168471
[7] J. Jaroš T. Kusano:
Oscillation theory of higher order linear functional differential equations of neutral type. Hiroshima Math. J. 18 (1987). 509-531.
DOI 10.32917/hmj/1206129616 |
MR 0991245
[8] J. Ruan:
Types and criteria of nonoscillatory solutions for second order linear neutral differential equations. Chinese Ann. Math. Ser. A 8 (1987), 114-124.
MR 0901645
[9] A. I. Zahariev D.D. Bainov:
On some oscillation criteria for a class of neutral type functional differential equations. J. Austral. Math. Soc. Ser. B 28 (1986), 228-239.
MR 0862572