Article
Keywords:
nearly disjoint sequence; strong convergence; convergence $\ell$-group
Summary:
For an abelian lattice ordered group $G$ let $\conv G$ be the system of all compatible convergences on $G$; this system is a meet semilattice but in general it fails to be a lattice. Let $\alpha_{nd}$ be the convergence on $G$ which is generated by the set of all nearly disjoint sequences in $G$, and let $\alpha$ be any element of $\conv G$. In the present paper we prove that the join $\alpha_{nd}\vee\alpha$ does exist in $\conv G$.
References:
[2] J. Jakubík:
Sequential convergences in l-groups without Urysohn's axiom. Czechoslovak Math. J. 42 (1992), 101-116.
MR 1152174 |
Zbl 0770.06008
[3] J. Jakubík:
Disjoint sequences in Boolean algebras. Math. Bohem 123 (1998), 411-418.
MR 1667113
[4] E. P. Shimbireva:
On the theory of partially ordered groups. Matem. Sbornik 20 (1947), 145-178. (In Russian.)
MR 0020558 |
Zbl 0029.10301