[1] R. E. Barlow J. Bartholomew J. N. Bremner, H. D. Brunk:
Statistical Inference under Order Restrictions: The Theory and Application of Isotonic Regression. J. Wiley, New York 1972.
MR 0326887
[2] K. Behnen, G. Neuhaus:
Rank Tests with Estimated Scores and Their Application. (Teubner Skripten zur Mathematischen Stochastik.) Teubner, Stuttgart 1989.
MR 1003116 |
Zbl 0692.62041
[3] H. Chernoff:
On the distribution of the likelihood ratio. Ann. Math. Statist. 25 (1954), 573-578.
MR 0065087 |
Zbl 0056.37102
[5] J. Dupačová:
Stability in stochastic programming with recourse: Contaminated distributions. Math. Programming Study 27 (1986), 133-144.
MR 0836754
[6] J. Dupačová:
Stochastic programming with incomplete information: A survey of results on postoptimization and sensitivity analysis. Optimization 18 (1987), 507-532.
MR 0909659
[7] J. Dupačová:
Asymptotic properties of restricted Li -estimates of regression. In: Statistical Data Analysis Based on Li-norm and Related Methods (Y. Dodge, ed.), North-Holland, Amsterdam 1987, pp. 263 - 274.
MR 0949231
[8] J. Dupačová:
On nonnormal asymptotic behavior of optimal solutions of stochastic programming problems: The parametric case. In: Proc. 4th Prague Symp. Asymptotic Statistics (P. Mandl, M. Huskova, eds.), Charles University, Prague 1989, pp. 205-214.
MR 1051439
[9] J. Dupačová:
On statistical sensitivity analysis in stochastic programming. Ann. Oper. Res. 29 (1990).
MR 1118898
[10] J. Dupačová, R. J., B. Wets:
Asymptotic behaviour of statistical estimators and of optimal solutions of stochastic optimization problems. Ann. Statist. 16 (1988), 1517-1549.
MR 0964937
[11] V. Fiacco, J. Kyparisis:
Sensitivity analysis in nonlinear programming under second order assumptions. In: Systems and Optimization (A. Bagich, H. Th. Jongen, eds.), Springer-Verlag, Berlin-Heidelberg-New York 1985, pp. 74-97.
MR 0878584 |
Zbl 0573.90089
[12] J. Gauvin:
A necessary and sufficient regularity condition to have bounded multipliers in nonconvex programming. Math. Programming 12 (1977), 136-138.
MR 0489903 |
Zbl 0354.90075
[13] S. van de Geer: Asymptotic Normality of Minimum Li-norm Estimators in Linear Regression. Report MS-R8806 Centre for Mathematics and Computer Science, Amsterdam 1988.
[14] C. Gouriéroux A. Holly, A. Monfort:
Likelihood ratio test, Wald test and KuhnTucker test in linear models with inequality constraints on the regression parameters. Econometrica 50 (1982), 63-80.
MR 0640166
[16] K. Jittorntrum:
Solution point differentability without strict complementarity in nonlinear programming. Math. Programming Study 21 (1984), 127-138.
MR 0751247
[17] G. G. Judge, T. Takayama:
Inequality restriction in regression analysis. J. Amer. Statist. Assoc. 67 (1966), 166-181.
MR 0193713
[18] A. J. King: Asymptotic Behaviour of Solutions in Stochastic Optimization: Nonsmooth Analysis and the Derivation of Non-normal Limit Distribution. Ph. D. Dissertation, Univ. of Washington 1986.
[19] A. J. King, R. T. Rockafellar: Asymptotic theory for solutions in generalized M-estimation and stochastic programming. Preprint, 1989.
[20] M. Kojima:
Strongly stable stationary solutions in nonlinear program. In: Analysis and Computation of Fixed Points (S. M. Robinson, ed.), Academic Press, New York 1980.
MR 0592631
[21] J. Kyparisis:
Sensitivity analysis for nonlinear programs and variational inequalities with nonunique multipliers. Math. Oper. Res. (to appear).
MR 1051573 |
Zbl 0708.90086
[22] Ch. K. Liew:
Inequality constrained Least-squares estimation. J. Amer. Statist. Assoc. 71 (1976), 746-751.
MR 0428625 |
Zbl 0342.62037
[23] T. Robertson F. T. Wright, R. L. Dykstra:
Order Restricted Statistical Inference (Wiley Series in Probability and Statistics). J. Wiley, New York 1988.
MR 0961262
[24] S. M. Robinson:
Local structure of feasible sets in nonlinear programming. Part III: Stability and sensitivity. Math. Programming Study 30 (1986), 45-66.
MR 0874131
[25] S. M. Robinson:
Local epi-continuity and local optimization. Math. Programming 37 (1987), 208-222.
MR 0883021 |
Zbl 0623.90078
[26] R. J. Serfting: Approximation Theorems in Mathematical Statistics. J. Wiley, New York 1980.
[27] A. Shapiro:
Sensitivity analysis of nonlinear programs and differentiability properties of metric projections. SIAM J. Control Optim. 26 (1988), 628-645.
MR 0937676 |
Zbl 0647.90089
[28] A. Shapiro:
Towards a unified theory of inequality constrained testing in multivariate analysis. Internat. Statist. Rev. 56 (1988), 49-62.
MR 0963140 |
Zbl 0661.62042
[29] A. Shapiro:
Asymptotic properties of statistical estimators in stochastic programming. Ann. Statist. 77(1989), 841-858.
MR 0994271 |
Zbl 0688.62025
[30] A. Shapiro: Gateaux, Frechet and Hadamard Directional Differentiability of Functional Solution in Stochastic Programming. Oper. Res. and Statistics Series No. 395, Technion, Haifa, Israel 1989.
[31] A. Shapiro:
On differental stability in stochastic programming. Math. Programming A47 (1990), 107-115.
MR 1054844
[32] H. White:
Maximum likelihood estimation of misspecified models. Econometrica 50 (1982), 1-25.
MR 0640163 |
Zbl 0478.62088