[1] R. B. Ash:
Real Analysis and Probability. Academic Press, New York 1972.
MR 0435320
[2] J. S. Baras D.-J. Ma, A. M. Makowski:
K competing queues with geometric service requirements and linear costs: The fie rule is always optimal. Systems Control Lett. 6(1985), 3, 173-180.
MR 0801867
[3] P. Biliingsley:
Convergence of Probability Measures. Wiley, New York 1968.
MR 0233396
[4] V. S. Borkar:
On minimum cost per unit of time control of Markov chains. SIAM J. Control Optim. 22 (1984), 6, 965-978.
MR 0762632
[5] R. Cavazos-Cadena:
Weak conditions for the existence of optimal stationary policies in average Markov decision chains with unbounded costs. Kybernetika 25 (1989), 3, 145- 156.
MR 1010178 |
Zbl 0673.90092
[6] R. Cavazos-Cadena, L. I. Sennott: Comparing recent assumptions for the existence of average optimal stationary policies (submitted for publication).
[7] K. Hinderer:
Foundations of Non-Stationary Dynamic Programming with Discrete Time Parameter. Springer-Verlag, Berlin-Heidelberg-New York 1970.
MR 0267890 |
Zbl 0202.18401
[10] P. Nain, K. W. Ross:
Optimal priority assignment with hard constraints. IEEE Trans. Automat. Control 5/(1986), 10, 883-888.
MR 0855542
[11] S. M. Ross:
Applied Probability Models with Optimization Applications. Holden-Day, San Francisco, California 1970.
MR 0264792 |
Zbl 0213.19101
[12] L. I. Sennot:
A new condition for the existence of optimal stationary policies in average cost Markov decision processes. Oper. Res. Lett. 5 (1986), 17 - 23.
MR 0845763
[13] L. I. Sennot: A new condition for the existence of optimum stationary policies in average cost Markov decision processes - unbounded cost case. Proceedings of the 25th IEEE Conference on Decision and Control, Athens, Greece 1986, pp. 1719-1721.
[14] L. C Thomas: Connectedness conditions for denumerable state Markov decision processes. In: Recent Developments in Markov Decision Processes (R. Hartley, L. C. Thomas and D. J. White, eds.), Academic Press, New York 1980, pp. 181 - 204.