Previous |  Up |  Next

Article

References:
[1] E. Delaleati: Sur les derivees de l'entree en representation et commande des systemes non lineaires. Ph.D. Thesis dissertation, Universite Paris-Sud 1993.
[2] M. D. Di Benedetto J. W. Crizzle, C. H. Moog: Rank invariants of nonlinear systems. SIAM J. Control Optim. 27(1989), 658-672. MR 0993292
[3] L. Cao, Y. F. Zheng: Disturbance decoupling via dynamic feedbacks. Internat. J. Systems Sci. 23 (1992), 683-694. MR 1162848
[4] M. Fliess: Generalized controller canonical forms for linear and nonlinear dynamics. IEEE Trans. Automat. Control 35 (1990), 994-1001. MR 1065035 | Zbl 0724.93010
[5] H. J. C. Huijberts H. Nijmeijer, L. L.M. Van Der Wegen: Dynamic disturbance decoupling for nonlinear systems: the nonsquare and noninvertible case. In: Controlled Dynamical Systems (B. Bonnard, B. Bride, J. P. Gauthier and I. Kupka, eds.), Birkhauser, Boston 1991, pp. 243-252. MR 1131998
[6] H. J. C. Huijberts H. Nijmeijer, L. L. M. Van Der Wegen: Dynamic disturbance decoupling for nonlinear systems. SIAM J. Control Optim. 30 (1992), 336-349. MR 1149072
[7] A. Isidori: Nonlinear Control Theory. Second edition. Springer-Verlag, New York 1989. MR 1229759 | Zbl 0672.00015
[8] W. Respondek: Disturbance decoupling via dynamic feedback. In: Controlled Dynamical Systems (B. Bonnard, B. Bride, J. P. Gauthier and I. Kupka, eds.), Birkhauser, Boston 1991, pp. 347-357. MR 1132008 | Zbl 0801.93023
[9] L. L. M. van der Wegen: Local disturbance decoupling with stability for nonlinear systems. (Lecture Notes in Control and Information Sciences 166.) Springer-Verlag, Berlin 1991. MR 1143782 | Zbl 0781.93019
[10] W.M. Wonham: Linear Multivariate Control: a Geometric Approach. Third edition. Springer-Verlag, New York 1985. MR 0770574
[11] Y. F. Zheng, L. Cao: Reduced inverses for controlled systems. Math. Control Signals Systems, to appear. MR 1358078
Partner of
EuDML logo