Previous |  Up |  Next

Article

References:
[1] J. W. S. Cassels: An introduction to the geometry of numbers. Springer, 1971. MR 0306130 | Zbl 0209.34401
[2] S. G. Dani, G. A. Margulis, V: alues of quadratic forms at integral points: an elementary approach. Enseign. Math. (2) 36 (1990), 143-174. MR 1071418
[3] T. H. Jackson: Small positive values of indefinite binary quadratic forms. J. London Math. Soc. 43 (1968) 730-738. DOI 10.1112/jlms/s1-43.1.730 | MR 0228432 | Zbl 0164.05204
[4] T. H. Jackson: One-sided inequalities for ternary forms I. J. Number Theory 13 (1981), 376-397. DOI 10.1016/0022-314X(81)90022-6 | MR 0634207 | Zbl 0472.10026
[5] T. H. Jackson: One-sided inequalities for ternary forms II. J. Number Theory 16 (1983), 333-342. DOI 10.1016/0022-314X(83)90061-6 | MR 0707606 | Zbl 0514.10025
[6] T. H. Jackson: Small positive values of indefinite ternary forms. Mathematika - to appear. MR 2059053 | Zbl 1051.11033
[7] K. Mahler: A theorem of B. Segre. Duke Math. J. 12 (1945), 367-371. DOI 10.1215/S0012-7094-45-01230-0 | MR 0012097 | Zbl 0060.11808
[8] A. Oppenheim: Minima of indefinite quaternary quadratic forms. Ann. Math. 32 (1931), 271-298. DOI 10.2307/1968191 | MR 1502997 | Zbl 0002.18002
[9] A. Oppenheim: Values of quadratic forms I. Quart. J. Math. Oxford Ser. 2 4 (1953), 54-59. DOI 10.1093/qmath/4.1.54 | MR 0054650 | Zbl 0050.27302
[10] B. Segre: Lattice points in infinite domains and asymmetric Diophantine approximations. Duke Math. J. 12 (1945), 337-365. MR 0012096 | Zbl 0060.11807
[11] G. L. Watson: Integral Quadratic Forms. Cambridge University Press, 1960. MR 0118704 | Zbl 0090.03103
[12] R. T. Worley: Non-negative values of quadratic forms. J. Austral. Math. Soc. 12 (1971), 224- 238. DOI 10.1017/S1446788700009484 | MR 0292754 | Zbl 0218.10037
Partner of
EuDML logo