Previous |  Up |  Next

Article

Title: On the Hilbert-Ackermann theorem in fuzzy logic (English)
Author: Novák, Vilém
Language: English
Journal: Acta Mathematica et Informatica Universitatis Ostraviensis
ISSN: 1211-4774
Volume: 4
Issue: 1
Year: 1996
Pages: 57-74
.
Category: math
.
MSC: 03B50
MSC: 03B52
idZBL: Zbl 0870.03008
idMR: MR1446784
.
Date available: 2009-01-30T09:03:25Z
Last updated: 2013-10-22
Stable URL: http://hdl.handle.net/10338.dmlcz/120505
.
Reference: [1] Chang C. C., H. J. Keisler: Model Theory.North-Holland, Amsterdam 1973. Zbl 0276.02032
Reference: [2] Goguen J. A.: The logic of inexact concepts.Synthese 19 (1968-69), 325-373. 10.1007/BF00485654
Reference: [3] Gottwald S.: Mehrwertige Logik.Akademie-Verlag, Berlin 1989. Zbl 0714.03022, MR 1117450
Reference: [4] Hajek P.: Fuzzy logic and arithmetical hierarchy.Fuzzy Sets and Systems 73 (1995), 359-363. Zbl 0857.03011, MR 1347824, 10.1016/0165-0114(94)00299-M
Reference: [5] Lehmke S.: On Resolution-Based Theorem Proving in Propositional Fuzzy Logic with 'Bold' Connectives.Diploma thesis. University of Dortmund, Dortmund 1995.
Reference: [6] Novák V.: Fuzzy Sets and Their Applications.Adam-Hilger, Bristol, 1989. MR 1019090
Reference: [7a] Novák V.: On the Syntactico-Semantical Completeness of First-Order Fuzzy Logic. Part I - Syntactical Aspects.Kybernetika 26 (1990), 47-66. MR 1042231
Reference: [7] Novák V.: On the Syntactico-Semantical Completeness of First-Order Fuzzy Logic. Part II - Main Results.Kybernetika 26 (1990), 134-154. MR 1059796
Reference: [8] Novák V.: The Alternative Mathematical Model of Linguistic Semantics and Pragmatics.Plenum, New York, 1992. MR 1213455
Reference: [9] Novák V.: On the logical basis of approximate reasoning.in V. Novák, J. Ramík, M. Mareš, M. Černý and J. Nekola, Eds.: Fuzzy Approach to Reasoning and Decision Making. Academia, Prague and Kluwer, Dordrecht 1992. MR 1219743
Reference: [10] Novák V.: Fuzzy Logic As a Basis of Approximate Reasoning.In: Zadeh, L. A., Kacprzyk, J. Fuzzy Logic for the Management of Uncertainty. J. Wiley & Sons, New York 1992.
Reference: [11] Novák V.: Towards Formalized Integrated Theory of Fuzzy Logic.In: Bien Z., and K. Min (eds.), Fuzzy Logic and Its Applications to Engineering, Information Sciences, and Intelligent Systems, Kluwer, Dordrecht 1995, 353-363. MR 1426861
Reference: [12] Novák V.: Ultraproduct Theorem and Recursive properties of Fuzzy Logic.In: Hohle U. and E. P. Klement (eds.), Non-Classical Logics and Their Applications to Fuzzy Subsets. A Handbook of the Mathematical Foundations of Fuzzy Set Theory, Kluwer, Dordrecht 1995, 341-370. MR 1345649
Reference: [13] Novák V.: Fuzzy Logic Revisited.Proc. Int. Conference EUFIT'94, Verlag der Augustinus Buchhandlung, Aachen 1994, 496-499.
Reference: [14] Novák V.: A New Proof of Completeness of Fuzzy Logic and Some Conclusions for Approximate Reasoning.Proc. Int. Conference FUZZ-IEEE/IFES'95, Yokohama 1995, 1461-1468.
Reference: [15] Novák V.: Paradigm, Formal Properties and Limits of Fuzzy Logic.Int. J. of General Systems 24 (1996), 377 405. 10.1080/03081079608945129
Reference: [16] Pavelka J.: On fuzzy logic I, II, III.Zeit. Math. Logic. Grundl. Math. 25 (1979), 45-52; 119-134; 447-464. MR 0524558, 10.1002/malq.19790250304
Reference: [17] Rasiowa H., R. Sikorski: The Mathematics of Metamathematics.PWN, Warszawa 1963. Zbl 0122.24311, MR 0163850
Reference: [18] Rose A., J. B. Rosser: Fragments of many-valued statement calculi.Trans. A.M.S. 87 (1958), 1-53. Zbl 0085.24303, MR 0094299, 10.1090/S0002-9947-1958-0094299-1
Reference: [19] Schwartz D. G.: Axioms for a Theory of Semantic Equivalence.Fuzzy Sets and Systems 21 (1987), 319-349. Zbl 0626.03015, MR 0879663, 10.1016/0165-0114(87)90133-3
Reference: [20] Shoenfield J. R.: Mathematical Logic.Addison-Wesley, New York 1967. Zbl 0155.01102, MR 0225631
.

Files

Files Size Format View
ActaOstrav_04-1996-1_6.pdf 1.535Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo