Previous |  Up |  Next

Article

References:
[1] De Boor C.: Splines as linear combinations of B-splines: A survey. in: Lorentz G. G., Chui C. K., Schumaker L. L., Hrsg., Approximation Theory II, Academic Press, New York, 1976, 1-47. MR 0467092 | Zbl 0343.41011
[2] De Boor C.: B-form basics. in: Farin G., Hrsg., Geometric Modeling, Algorithms and New Trends, SIAM, Philadelphia, 1987, 131-148. MR 0936450
[3] Cohen E., Schumaker L. L.: Rates of convergence of control polygons. CAGD 2 (1985), 229-235. MR 0828549 | Zbl 0597.65003
[4] Curry H. B., Schoenberg I. J.: On Pólya frequency functions IV: The fundamental spline functions and their limits. J. Analyse Math. 17 (1966), 71-107. DOI 10.1007/BF02788653 | MR 0218800 | Zbl 0146.08404
[5] Dahmen W., Micchelli C.A., Seidel H.-P.: Blossoming begets B-spline bases built better by B-patches. Math. Comp. 59 (199) (1992), 97-115. MR 1134724
[6] Fong P., Seidel H.-P.: An implementation of triangular B-splline surfaces over arbitrary triangulations. CAGD 10 (1993), 267-275. MR 1235157
[7] Hollig K.: Multivariate splines. SIAM J. Numer. Anal. 19 (5) (1982), 1013-1031. DOI 10.1137/0719073 | MR 0672574
[8] Micchelli C A.: A constructive approach to Kergin interpolation in $R^k$: Multivariate B-splines and Lagrange-interpolation. Rocky Mountain J. Math. 10(3) (1980), 485-497. DOI 10.1216/RMJ-1980-10-3-485 | MR 0590212
[9] Seidel H.-P.: Symmetric recursive algorithms for surfaces: B-patches and the de Boor algorithm for polynomials over triangles. Const. Approx. 7 (1991), 257-279. DOI 10.1007/BF01888157 | MR 1101066 | Zbl 0733.41018
[10] Seidel H.-P.: Representing piecewise polynomials as linear combinations of multivariate B-splines. in: Lyche T., and Schumaker L. L., Mathematical methods in computer aided geometric design, II, Academic Press, Boston (1992), 559-566. MR 1172832
[11] Walter W.: Analysis II. Springer Verlag, Berlin, 1990. Zbl 0705.26001
Partner of
EuDML logo