[1] Boley B. A., Weiner J. H.:
Theory of Thermal Stresses. J. Wiley and sons, New York, 1960
MR 0112414 |
Zbl 1234.74001
[2] Dafermos C. M.:
On the Existence and the Asymptotic Stability of Solution to the Equations of Linear Thermoelasticity. Arch. Rational Mech. Anal., 29 (1968), 241-271.
MR 0233539
[3] Washizu K.:
Variational Methods in Elasticity and Plasticity. Pergamon Press, Oxford, 1968.
MR 0391679 |
Zbl 0164.26001
[4] Kovalenko A. D.: Fundamentals of thermoelasticity. Izdatelstvo "Naukova dumka", Kiev, 1970 (in Russian).
[5] Nowacki W.: Dynamical problems of thermoelasticity. Izdatelstvo "Mir", Moskva, 1970 (in Russian).
[6] Aubin J. P.:
Approximation of Elliptic Boundary - Value Problems. Wiley-Interscience, London, 1972.
MR 0478662 |
Zbl 0248.65063
[7] Carlson D. E.: Linear Thermoelasticity. Encyklopedia of Physics, ed. S. Flüge, Volume VIa/2, Mechanics of Solids II. Springer Verlag, Berlin, 1972.
[8] Lions J. L.: Někatoryje metody rešenija nelinejnych krajevych zadač. Izdatelstvo "Mir", Moskva, 1972 (in Russian).
[10] Michlin S. G.: Variational methods in mathematical physics. Alfa, Bratislava, 1975 (in Slovak).
[11] Truesdell C.: A first course in rational mechanics. Izdatelstvo "Mir", Moskva 1975 (in Russian).
[12] Glowinski R., Lions J. L. , Trémolieres R.: Analyse numérique des inéquations variationnelles. Dunod, Paris, 1976.
[13] Kufner A., John O., Fučík S.:
Function Spaces. Academia, Praha, 1977.
MR 0482102
[14] Michlin S. G.: Linějnyje uravněnija v častnych proizvodnych. Moskva, Vyššaja škola, 1977 (in Russian).
[15] Nowacki W.:
Coupled fields in mechanics of solids. In: W. T. Koiter: Theoretical and Applied Mechanics, Proceedings of the 14th IUTAM Congress, Delft, The Netherlands, 1976, North-Holland, Amsterdam, 1977.
MR 0429437
[16] Nowinski J. L.:
Theory of thermoelasticity with applications. Sijthoff & Noordhoff international Publishers, Aplhen Aan den Tijn, 1978.
MR 0512892 |
Zbl 0379.73004
[18] Day W. A.:
Justification of the Uncoupled and Quasistatic Approximation in a Problem of Dynamic Thermoelasticity. Arch. Rational Mech. Anal. 77 (1981), 387-396.
MR 0642554
[19] Day W. A.:
Further Justification of the Uncoupled and Quasi-Static Approximations in Thermoelasticity. Arch. Rational Mech. Anal. 79 (1982), 85-95.
MR 0654916 |
Zbl 0507.73003
[20] Bock I., Lovíšek J., Štangl J.: Contact problem for two elastic beams. (in slovak), Strojnický časopis 35 (1984), No 3, 353-373 (in Slovak).
[21] Ženíšek A.:
The existence and uniqueness theorem in Biot’s consolidation theory. Aplikace matematiky, 29 (1984), No 3, 194-211.
MR 0747212 |
Zbl 0557.35005
[22] Ženíšek A.:
Finite element methods for coupled thermoelasticity and coupled consolidation of clay. R. A. I. R. O. Numer. Anal. 18 (1984), 183-205.
MR 0743885
[23] Day W. A.:
Heat Conduction Within Linear Thermoelasticity. Springer-Verlag, New York, 1985.
MR 0804043 |
Zbl 0577.73009
[24] Horák J.: Evolution variational inequalities in thermoelasticity. MÚ ČSAV, Praha, 1985 (in Czech).
[25] Horák J.: Solution of the problem in linear theory of coupled thermoelasticity. Ph. D. Thesis, Faculty of Natural Sciences, UP Olomouc, 1993 (in Czech).
[26] Kačur J.:
Method of Rothe in Evolution Equations. Taubner - Texte zur Mathematik, Band 80, Liepzig, 1985.
MR 0834176
[27] Rektorys K.: Method of dicretization in time and partial differential equations. TKI, SNTL, Praha, 1985 (in Czech).
[28] Kačur J., Ženíšek A.:
Analysis of approximate solution of coupled dynamical thermoelasticity and related problems. Aplikace matematiky 31 (1986), No 3, 190-223.
MR 0837733
[29] Tauchert T. R.: Thermal Stresses in Plates - Dynamical Problems, chapter 1. In: Richard B. Hetnarski, ed.: Thermal Stresses, vol II., North-Holland, Amsterdam, 1986.