Previous |  Up |  Next

Article

References:
[1] Boley B. A., Weiner J. H.: Theory of Thermal Stresses. J. Wiley and sons, New York, 1960 MR 0112414 | Zbl 1234.74001
[2] Dafermos C. M.: On the Existence and the Asymptotic Stability of Solution to the Equations of Linear Thermoelasticity. Arch. Rational Mech. Anal., 29 (1968), 241-271. MR 0233539
[3] Washizu K.: Variational Methods in Elasticity and Plasticity. Pergamon Press, Oxford, 1968. MR 0391679 | Zbl 0164.26001
[4] Kovalenko A. D.: Fundamentals of thermoelasticity. Izdatelstvo "Naukova dumka", Kiev, 1970 (in Russian).
[5] Nowacki W.: Dynamical problems of thermoelasticity. Izdatelstvo "Mir", Moskva, 1970 (in Russian).
[6] Aubin J. P.: Approximation of Elliptic Boundary - Value Problems. Wiley-Interscience, London, 1972. MR 0478662 | Zbl 0248.65063
[7] Carlson D. E.: Linear Thermoelasticity. Encyklopedia of Physics, ed. S. Flüge, Volume VIa/2, Mechanics of Solids II. Springer Verlag, Berlin, 1972.
[8] Lions J. L.: Někatoryje metody rešenija nelinejnych krajevych zadač. Izdatelstvo "Mir", Moskva, 1972 (in Russian).
[9] Adams R. A.: Sobolev Spaces. Academic Press, New York, 1975. MR 0450957 | Zbl 0314.46030
[10] Michlin S. G.: Variational methods in mathematical physics. Alfa, Bratislava, 1975 (in Slovak).
[11] Truesdell C.: A first course in rational mechanics. Izdatelstvo "Mir", Moskva 1975 (in Russian).
[12] Glowinski R., Lions J. L. , Trémolieres R.: Analyse numérique des inéquations variationnelles. Dunod, Paris, 1976.
[13] Kufner A., John O., Fučík S.: Function Spaces. Academia, Praha, 1977. MR 0482102
[14] Michlin S. G.: Linějnyje uravněnija v častnych proizvodnych. Moskva, Vyššaja škola, 1977 (in Russian).
[15] Nowacki W.: Coupled fields in mechanics of solids. In: W. T. Koiter: Theoretical and Applied Mechanics, Proceedings of the 14th IUTAM Congress, Delft, The Netherlands, 1976, North-Holland, Amsterdam, 1977. MR 0429437
[16] Nowinski J. L.: Theory of thermoelasticity with applications. Sijthoff & Noordhoff international Publishers, Aplhen Aan den Tijn, 1978. MR 0512892 | Zbl 0379.73004
[17] Aubin J. P.: Applied Functional Analysis. J. Wiley and sons, New York, 1979. MR 0549483 | Zbl 0424.46001
[18] Day W. A.: Justification of the Uncoupled and Quasistatic Approximation in a Problem of Dynamic Thermoelasticity. Arch. Rational Mech. Anal. 77 (1981), 387-396. MR 0642554
[19] Day W. A.: Further Justification of the Uncoupled and Quasi-Static Approximations in Thermoelasticity. Arch. Rational Mech. Anal. 79 (1982), 85-95. MR 0654916 | Zbl 0507.73003
[20] Bock I., Lovíšek J., Štangl J.: Contact problem for two elastic beams. (in slovak), Strojnický časopis 35 (1984), No 3, 353-373 (in Slovak).
[21] Ženíšek A.: The existence and uniqueness theorem in Biot’s consolidation theory. Aplikace matematiky, 29 (1984), No 3, 194-211. MR 0747212 | Zbl 0557.35005
[22] Ženíšek A.: Finite element methods for coupled thermoelasticity and coupled consolidation of clay. R. A. I. R. O. Numer. Anal. 18 (1984), 183-205. MR 0743885
[23] Day W. A.: Heat Conduction Within Linear Thermoelasticity. Springer-Verlag, New York, 1985. MR 0804043 | Zbl 0577.73009
[24] Horák J.: Evolution variational inequalities in thermoelasticity. MÚ ČSAV, Praha, 1985 (in Czech).
[25] Horák J.: Solution of the problem in linear theory of coupled thermoelasticity. Ph. D. Thesis, Faculty of Natural Sciences, UP Olomouc, 1993 (in Czech).
[26] Kačur J.: Method of Rothe in Evolution Equations. Taubner - Texte zur Mathematik, Band 80, Liepzig, 1985. MR 0834176
[27] Rektorys K.: Method of dicretization in time and partial differential equations. TKI, SNTL, Praha, 1985 (in Czech).
[28] Kačur J., Ženíšek A.: Analysis of approximate solution of coupled dynamical thermoelasticity and related problems. Aplikace matematiky 31 (1986), No 3, 190-223. MR 0837733
[29] Tauchert T. R.: Thermal Stresses in Plates - Dynamical Problems, chapter 1. In: Richard B. Hetnarski, ed.: Thermal Stresses, vol II., North-Holland, Amsterdam, 1986.
Partner of
EuDML logo