Previous |  Up |  Next

Article

Keywords:
$\Sigma$-product; Tikhonov cube; Valdivia compact; locally compact space
Summary:
In some sense, a dual property to that of Valdivia compact is considered, namely the property to be embedded as a closed subspace into a complement of a $\Sigma$-subproduct of a Tikhonov cube. All locally compact spaces are co-Valdivia spaces (and only those among metrizable spaces or spaces having countable type). There are paracompact non-locally compact co-Valdivia spaces. A possibly new type of ultrafilters lying in between P-ultrafilters and weak P-ultrafilters is introduced. Under Martin axiom and negation of CH, no countable nowhere dense space is a co-Valdivia space.
References:
[1] Arhangel'skii A.V.: Two types of remainders of topological groups. Comment. Math. Univ. Carolin. 49 (2008), 119-126. MR 2433629 | Zbl 1212.54086
[2] Corson H.H.: Normality in subsets of product spaces. Amer. J. Math. 81 (1959), 785-796. DOI 10.2307/2372929 | MR 0107222 | Zbl 0095.37302
[3] Kalenda O.: Valdivia compact spaces in topology and Banach space theory. Extracta Math. 15 (2000), 1-85. MR 1792980 | Zbl 0983.46021
[4] Kalenda O.: On the class of continuous images of Valdivia compacta. Extracta Math. 18 (2003), 65-80. MR 1989298 | Zbl 1159.46306
[5] Noble N.: The continuity of functions on Cartesian products. Trans. Amer. Math. Soc. 149 (1970), 187-198. DOI 10.1090/S0002-9947-1970-0257987-5 | MR 0257987 | Zbl 0229.54028
[6] Šapirovskii B.: On the density of topological spaces. Soviet Math. Dokl. 13 (1972), 1271-1275. MR 0383331
[7] Šapirovskii B.: On separability and metrizability of spaces with Souslin's condition. Soviet Math. Dokl. 13 (1972), 1633-1638. MR 0322801
[8] Tall F.D.: The countable chain condition versus separability - applications of Martin's axiom. General Topology Appl. 4 (1974), 315-339. DOI 10.1016/0016-660X(74)90010-5 | MR 0423284 | Zbl 0293.54003
Partner of
EuDML logo