Previous |  Up |  Next

Article

Keywords:
subdifferential operator; function of compact type; evolution inclusion; continuous selection; path connectedness; differential variational inequalities; nonlinear parabolic system
Summary:
In this paper we consider nonconvex evolution inclusions driven by time dependent convex subdifferentials. First we establish the existence of a continuous selection for the solution multifunction and then we use that selection to show that the solution set is path connected. Two examples are also presented.
References:
[1] Ahmed N.U.: Existence of optimal controls for a class of systems governed by differential inclusions on a Banach space. J. Optim. Theory Appl. 50 (1986), 213-237. MR 0857234 | Zbl 0577.49025
[2] Aubin J.-P., Cellina A.: Differential Inclusions. Springer, Berlin, 1984. MR 0755330 | Zbl 0538.34007
[3] Barbu V.: Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff International Publishing, Leyden, The Netherlands, 1976. MR 0390843 | Zbl 0328.47035
[4] Brezis H.: Operateurs Maximaux Monotones. North Holland, Amsterdam, 1973. Zbl 0252.47055
[5] Cellina A., Ornelas A.: Representation of the attainable set for Lipschitzian differential inclusions. Rocky Mountain J. Math. 22 (1992), 117-124. MR 1159946 | Zbl 0752.34012
[6] Chang K.C.: The obstacle problem and partial differential equations with discontinuous nonlinearities. Comm. Pure and Appl. Math. 33 (1980), 117-146. MR 0562547 | Zbl 0405.35074
[7] Colombo R., Fryszkowski A., Rzezuchowski T., Staicu V.: Continuous selection of solution sets of Lipschitzian differential inclusions. Funkcialaj Ekvacioj, to appear. MR 1130468
[8] DeBlasi F., Pianigiani G.: On the solution sets of nonconvex differential inclusions. Centro V. Volterra, Università di Roma II, Preprint No. 73, September 1991.
[9] Deimling K., Rao M.R.M.: On solution sets of multivalued differential equations. Applicable Analysis 28 (1988), 129-135. MR 0967566 | Zbl 0635.34014
[10] Diestel J., Uhl J.: Vector Measures. Math. Surveys, Vol. 15, AMS, Providence, Rhode Island, 1977. MR 0453964 | Zbl 0521.46035
[11] Dugundji J.: Topology. Allyn and Bacon Inc., Boston, 1966. MR 0193606 | Zbl 0397.54003
[12] Henry C.: Differential equations with discontinuous right-hand side for planning procedures. J. Economic Theory 4 (1972), 545-551. MR 0449534
[13] Himmelberg C., Van Vleck F.: A note on solution sets of differential inclusions. Rocky Mountain J. Math. 12 (1982), 621-625. MR 0683856
[14] Hu S., Papageorgiou N.S.: On the topological regularity of the solution set of differential inclusions with constraints. J. Differential Equations, to appear. MR 1264523 | Zbl 0796.34017
[15] Kenmochi N.: Some nonlinear parabolic inequalities. Israel J. Math 22 (1975), 304-331. MR 0399662
[16] Moreau J.-J.: Evolution problem associated with a moving convex set in a Hilbert space. J. Differential Equations 26 (1977), 347-374. MR 0508661
[17] Papageorgiou N.S.: On evolution inclusions associated with time dependent convex subdifferentials. Comment. Math. Univ. Carolinae 31 (1990), 517-527. MR 1078486 | Zbl 0711.34076
[18] Papageorgiou N.S.: Optimal control of nonlinear evolution inclusions. J. Optim. Theory 67 (1990), 321-354. MR 1080139 | Zbl 0697.49007
[19] Papageorgiou N.S.: On the solution set of differential inclusions in Banach spaces. Applicable Analysis 25 (1987), 319-329. MR 0912190
[20] Papageorgiou N.S.: Extremal solutions of evolution inclusions associated with time dependent convex subdifferentials. Math. Nachrichten 158 (1992), 219-232. MR 1235307 | Zbl 0776.34014
[21] Papageorgiou N.S.: A property of the solution set of nonlinear evolution inclusions with state constraints. Mathematica Japonica 38 (1993), 559-569. MR 1221027 | Zbl 0777.34043
[22] Papageorgiou N.S.: On the set of solutions of a class of nonlinear evolution inclusions. Kôdai Math. Jour. 15 (1992), 387-402. MR 1189966 | Zbl 0774.34011
[23] Papageorgiou N.S.: Differential inclusions with state constraints. Proc. of the Edinburgh Math. Soc. 32 (1988), 81-97. MR 0981995
[24] Pugh C.C.: Funnel sections. J. Differential Equations 19 (1975), 270-295. MR 0393678 | Zbl 0327.34007
[25] Staicu V.: Continuous selections of solution sets to evolution inclusions. SISSA, Reprint No. 42M, Trieste, Italy, March 1990.
[26] Staicu V., Wu H.: Arcwise connectedness of solution sets to Lipschitzian differential inclusions. SISSA, Reprint No. 71M, Trieste, Italy, June 1990. MR 1120387
[27] Tolstonogov A.: On the structure of the solution set for differential inclusions in a Banach space. Math. USSR Sbornik 46 (1983), 1-15. Zbl 0564.34065
[28] Wagner D.: Survey of measurable selection theorems. SIAM J. Control and Optim. 15 (1977), 859-903. MR 0486391 | Zbl 0407.28006
[29] Watanabe J.: On certain nonlinear evolution equations. J. Math. Soc. Japan 25 (1973), 446-463. MR 0326522 | Zbl 0253.35053
[30] Yamada Y.: On evolution equations generated by subdifferential operators. J. Fac. Sci. Univ. Tokyo 23 (1976), 491-515. MR 0425701 | Zbl 0343.34053
[31] Yotsutani S.: Evolution equations associated with the subdifferentials. J. Math. Soc. Japan 31 (1978), 623-646. MR 0544681 | Zbl 0405.35043
Partner of
EuDML logo