Previous |  Up |  Next

Article

Keywords:
neutral differential equation; oscillation criterion; Riccati transform; averaging method
Summary:
This paper is concerned with a class of even order nonlinear differential equations of the form \[ \frac{d}{dt}\Big ( \Big |\left( x(t)+p(t)x(\tau (t))\right) ^{(n-1)}\Big | ^{\alpha -1}(x(t)+p(t)x(\tau (t)))^{(n-1)}\Big ) +F\big ( t,x(g(t))\big ) =0\,, \] where $n$ is even and $t\ge t_{0}$. By using the generalized Riccati transformation and the averaging technique, new oscillation criteria are obtained which are either extensions of or complementary to a number of existing results. Our results are more general and sharper than some previous results even for second order equations.
References:
[1] Agarwal R. P., Grace S. R., O’Regan D.: Oscillation criteria for certain $n$-th order differential equations with deviating arguments. J. Math. Anal. Appl. 262 (2002), 601–522. MR 1859327 | Zbl 0997.34060
[2] Agarwal R. P., Grace S. R., O’Regan D.: Oscillation Theory for Difference and Functional Differential equations. Kluwer, Dordrecht, 2000. MR 1774732 | Zbl 0954.34002
[3] Grace S. R., Lalli B. S.: Oscillation theorems for damped differential equations of even order with deviating argument. SIAM J. Math. Anal. 15 (1984), 308–316. MR 0731869
[4] Grammatikopoulos M. K., Ladas G., Meimaridou A.: Oscillations of second order neutral delay differential equations. Rat. Mat. 1 (1985), 267–274. MR 0827474 | Zbl 0581.34051
[5] Hardy G. H., Littlewood J. E., Polya G.: Inequalities. second ed., Caombridge Univ. Press, Cambridge, 1988. MR 0944909 | Zbl 0634.26008
[6] Kiguradze I., Partsvania N., Stavroulakis I. P.: On oscillatory properties of higher order advanced functional differential equations. (Russian) Differentsial’nye Uravneniya 388 (2002), 1030–1041. MR 2021167
[7] Kong Q.: Interval criteria for oscillation of second-order linear ordinary differential equations. J. Math. Anal. Appl. 229 (1999), 258–270. MR 1664352 | Zbl 0924.34026
[8] Kusano T., Lalli B. S.: On oscillation of half-linear functional differential equations with deviating arguments. Hiroshima Math. J., 24 (1994), 549-563. MR 1309139 | Zbl 0836.34081
[9] Philos, Ch. G.: A new criteria for the oscillatory and asymptotic behavior of delay differential equations. Bull. Acad. Pol. Sci. Mat. 39 (1981), 61–64. MR 0640329
[10] Philos, Ch. G.: Oscillation theorems for linear differential equations of second order. Arch. Math. 53 (1989), 483–492. MR 1019162 | Zbl 0661.34030
[11] Wang Q. R., Yang Q. G.: Interval criteria for oscillation of second-order half-linear differential equations. J. Math. Anal. Appl. 291 (2004), 224–236. MR 2034069 | Zbl 1053.34034
[12] Wong P. J. Y., Agarwal R. P.: Oscillation theorems and existence criteria of asymptotically monotone solutions for second order differential equations. Dynam. Systems Appl. 4 (1995), 477–496. MR 1365834 | Zbl 0840.34021
[13] Wong P. J. Y., Agarwal R. P.: Oscillatory behavior of solutions of certain second order differential equations. J. Math. Anal. Appl. 198 (1996), 337–354. MR 1376268
[14] Xu Z. T., Xia Y.: Integral averaging technique and oscillation of even order delay differential equations. J. Math. Anal. Appl. 292 (2004), 238–246. MR 2050227
[15] Yang Q. G., Tang Y.: Oscillation of even order nonlinear functional differential equations with damping. Acta Math. Hungar. 1023 (2004), 223–238. MR 2035372 | Zbl 1048.34115
[16] Yang Q. G., Yang L. J., Zhu S. M.: Interval criteria for oscillation of second order nonlinear neutral differential equations. Computers and Math. Appl. 465-6 (2003), 903–918. MR 2020448 | Zbl 1057.34088
Partner of
EuDML logo