Article
Keywords:
entire functions; meromorphic functions; value sharing; unicity
Summary:
This paper studies the unicity of meromorphic(resp. entire) functions of the form $f^nf^{\prime }$ and obtains the following main result: Let $f$ and $g$ be two non-constant meromorphic (resp. entire) functions, and let $a\in \mathbb {C}\backslash \lbrace 0\rbrace $ be a non-zero finite value. Then, the condition that $E_{3)}(a,f^nf^{\prime })=E_{3)}(a,g^ng^{\prime })$ implies that either $f=dg$ for some $(n+1)$-th root of unity $d$, or $f=c_1e^{cz}$ and $g=c_2e^{-cz}$ for three non-zero constants $c$, $c_1$ and $c_2$ with $(c_1c_2)^{n+1}c^2=-a^2$ provided that $n\ge 11$ (resp. $n\ge 6$). It improves a result of C. C. Yang and X. H. Hua. Also, some other related problems are discussed.
References:
[2] Fang M. L., Qiu H. L.:
Meromorphic functions that share fixed-points. J. Math. Anal. Appl. 268 (2000), 426–439.
MR 1896207 |
Zbl 1030.30028
[4] Hayman W. K.:
Research Problems in Function Theory. Athlore Press (Univ. of London), 1967.
MR 0217268 |
Zbl 0158.06301
[5] Hayman W. K.:
Picard values of meromorphic functions and their derivatives. Ann. of Math. 70 (1959), 9–42.
MR 0110807 |
Zbl 0088.28505
[6] Yang C. C.:
On deficiencies of differential polynomials II. Math. Z. 125 (1972), 107–112.
MR 0294642 |
Zbl 0217.38402
[7] Yang C. C., Hua X. H.:
Uniqueness and value-sharing of meromorphic functions. Ann. Acad. Sci. Fenn. Math. 22 (1997), 395–406.
MR 1469799 |
Zbl 0890.30019
[8] Yang C. C., Yi H. X.:
Uniqueness Theory of Meromorphic Functions. Science Press & Kluwer Academic Punlishers, Beijing & Dordrecht, 2003.
MR 2105668 |
Zbl 1070.30011
[9] Yi H. X.:
Uniqueness of meromorphic functions and a question of C. C. Yang. Complex Variables Theory Appl. 14 (1990), 169–176.
MR 1048716 |
Zbl 0701.30025