Article
Keywords:
nonoscillatory solutions; zeros of solutions; singular eigenvalue problems
Summary:
The higher-order nonlinear ordinary differential equation \[ x^{(n)} + \lambda p(t)f(x) = 0\,, \quad t \ge a\,, \] is considered and the problem of counting the number of zeros of bounded nonoscillatory solutions $x(t;\lambda )$ satisfying $\lim _{t\rightarrow \infty }x(t;\lambda ) = 1$ is studied. The results can be applied to a singular eigenvalue problem.
References:
[1] Elias U.:
Eigenvalue problems for the equation $Ly + \lambda p(x)y = 0$. J. Differential Equations 29 (1978), 28–57.
MR 0486759 |
Zbl 0369.34008
[3] Elias U.:
Singular eigenvalue problems for the equation $y^{(n)} + \lambda p(x)y = 0$. Monatsh. Math. 142 (2004), 205–225.
MR 2071246
[4] Elias U., Pinkus A.:
Nonlinear eigenvalue problems for a class of ordinary differential equations. Proc. Roy. Soc. Edinburgh Sect. A 132 (2002), 1333–1359.
MR 1950810 |
Zbl 1028.34076
[6] Kiguradze I. T., Chanturia T. A.:
Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations. Kluwer, 1993.
Zbl 0782.34002
[7] Naito M.:
On the number of zeros of nonoscillatory solutions to higher-order linear ordinary differential equations. Monatsh. Math. 136 (2002), 237–242.
MR 1919646 |
Zbl 1009.34034
[8] Naito M., Naito Y.:
Solutions with prescribed numbers of zeros for nonlinear second order differential equations. Funkcial. Ekvac. 37 (1994), 505–520.
MR 1311557 |
Zbl 0820.34019
[9] Naito Y., Tanaka S.:
On the existence of multiple solutions of the boundary value problem for nonlinear second-order differential equations. Nonlinear Anal. 56 (2004), 919–935.
MR 2036055 |
Zbl 1046.34038