Previous |  Up |  Next

Article

Keywords:
projective special linear group; element order
Summary:
Let $\omega (G)$ denote the set of element orders of a finite group $G$. If $H$ is a finite non-abelian simple group and $\omega (H)=\omega (G)$ implies $G$ contains a unique non-abelian composition factor isomorphic to $H$, then $G$ is called quasirecognizable by the set of its element orders. In this paper we will prove that the group $PSL_{4}(5)$ is quasirecognizable.
References:
[1] Aleeva M. R.: On finite simple groups with the set of element orders as in a Frobenius group or a double Frobenius group. Math. Notes 73 3-4 (2003), 299–313. MR 1992593 | Zbl 1065.20025
[2] Brandl R., Shi W. J.: The characterization of $PSL(2,q)$ by its element orders. J. Algebra, 163 (1) (1994), 109–114. MR 1257307
[3] Conway J. H., Curtis R. T., Norton S. P., Parker R. A., Wilson R. A.: Atlas of Finite Groups. Clarendon Press, Oxford, 1985. MR 0827219 | Zbl 0568.20001
[4] Darafsheh M. R., Karamzadeh N. S.: A characterization of groups $PSL(3,q)$ by their element orders for certain $q$. J. Appl. Math. Comput. (old KJCAM) 9 (2) (2002), 409–421. MR 1895684
[5] Darafsheh M. R.: Some conjugacy classes in groups associated with the general linear groups. Algebras Groups Geom. 15 (1998), 183–199. MR 1676998 | Zbl 0995.20027
[6] Darafsheh M. R., Farjami Y.: Calculating the set of orders of elements in the finite linear groups. submitted. Zbl 1154.20040
[7] Gorenstein D.: Finite groups. Harper and Row, New York, 1968. MR 0231903 | Zbl 0185.05701
[8] Higman G.: Finite groups in which every element has prime power order. J. London Math. Soc. 32 (1957), 335–342. MR 0089205 | Zbl 0079.03204
[9] Kleidman P., Liebeck M.: The subgroup structure of finite classical groups. Cambridge University Press, 1990. MR 1057341
[10] Kondratjev A. S.: On prime graph components of simple groups. Math. Sb. 180 (6) (1989), 787–797.
[11] Lipschutz S., Shi W. J.: Finite groups whose element orders do not exceed twenty. Progr. Natur. Sci. 10 (1) (2000), 11–21. MR 1765567
[12] Mazurov V. D., Xu M. C., Cao H. P.: Recognition of finite simple groups $L_{3}(2^{m})$ and $U_{3}(2^{m})$ by their element orders. Algebra Logika 39 (5) (2000), 567–585. MR 1805756
[13] Mazurov V. D.: Characterization of finite groups by sets of orders of their elements. Algebra Logika 36 (1) (1997), 37–53. MR 1454690
[14] Passman D. S.: Permutation groups. W. A. Bengamin, New York, 1968. MR 0237627 | Zbl 0179.04405
[15] Shi W. J.: A characteristic property of $\mathbb{A}_{5}$. J. Southwest-China Teachers Univ. (B) 3 (1986), 11–14. MR 0915854
[16] Shi W. J.: A characteristic property of $PSL_{2}(7)$. J. Austral. Math. Soc. (A) 36 (3) (1984), 354–356. MR 0733907
[17] Shi W. J.: A characterization of some projective special linear groups. J. Southwest-China Teachers Univ. (B) 2 (1985), 2–10. MR 0843760 | Zbl 0597.20007
[18] Shi W. J.: A characteristic property of $J_{1}$ and $PSL_{2}(2^{n})$. Adv. Math. (in Chinese) 16 (4) (1987), 397–401.
[19] Shi W., Bi J.: A characteristic property for each finite projective special linear group. Lecture Notes in Math. 1456 (1990), 171–180. MR 1092230 | Zbl 0718.20009
[20] Willams J. S.: Prime graph components of finite groups. J. Algebra 69 (2) (1981), 487–513. MR 0617092
Partner of
EuDML logo