[1] Arocha J. L., Bracho J., Montejano L., Oliveros D., Strausz R.:
Separoids, their categories and a Hadwiger-type theorem. Discrete Comput. Geom. 27(3) (2002), 377–385.
MR 1921560 |
Zbl 1002.52008
[2] Björner A., Las Vergnas M., Sturmfels B., White N., Ziegler G.:
Oriented Matroids. Encyclopedia of Mathematics and Its Applications 46, Cambridge University Press, 1993.
MR 1226888 |
Zbl 0773.52001
[3] Bracho J., Strausz R.: Separoids and a characterisation of linear uniform oriented matroids. KAM-DIMATIA Series, Charles University at Prague 17 2002.
[4] Hell P., Nešetřil J.:
On the complexity of H-coloring. J. Combin. Theory, Ser. B 48(1) (1990), 92–110. An earlier version appeared in: Combinatorics, graph theory, and computing, Proc. 17th Southeast. Conf., Boca Raton/Fl. 1986, Congr. Numerantium 55, 284 (1986).
MR 1047555 |
Zbl 0639.05023
[5] Hell P., Nešetřil J.:
Graphs and Homomorphisms. Oxford Lecture Series in Mathematics and its Applications 28, Oxford University Press, 2004.
MR 2089014
[6] Hochstättler W., Nešetřil J.:
Linear programming duality and morphisms. Comment. Math. Univ. Carolin. 40(3) (1999), 577–592.
MR 1732478
[7] Las Vergnas M.: Matroïdes orientables. C. N. R. S. Paris, 1974.
[8] Montellano-Ballesteros J. J., Pór A., Strausz R.:
Tverberg-type theorems for separoids. Discrete Comput. Geom. 35 (3) (2006), 513–523.
MR 2202117 |
Zbl 1091.52500
[9] Montellano-Ballesteros J. J., Strausz R.: A characterisation of cocircuit graphs of uniform oriented matroids. KAM-DIMATIA Series, Charles University at Prague 26 (565), 2002.
[10] Montellano-Ballesteros J. J., Strausz R.:
Counting polytopes via the Radon complex. J. Combin. Theory Ser. A 106(1) (2004), 109–121.
MR 2050119 |
Zbl 1042.05024
[11] Nešetřil J., Tardif C.:
Duality theorems for finite structures (characterising gaps and good characterisations). J. Combin. Theory Ser. B 80(1) (2000), 80–97.
MR 1778201 |
Zbl 1024.05078
[12] Pultr A., Trnková V.:
Combinatorial, algebraic and topological representations of groups, semigroups and categories. North-Holland Mathematical Library 22, North-Holland Publishing Co., Amsterdam, 1980.
MR 0563525
[13] Radon J.:
Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten. Math. Ann. 83 (1921), 113–115.
MR 1512002
[14] Strausz R.: Separoides. Situs Ser. B, Universidad Nacional Autónoma de México 5(1998), 36–41.
[15] Strausz R.: Separoides: el complejo de Radon. Master’s thesis, Universidad Nacional Autónoma de México, 2001.
[16] Strausz R.: On Radon’s theorem and representation of separoids. ITI Series, Charles University at Prague 32 (118), (2003).
[17] Strausz R.: On Separoids. PhD thesis, Universidad Nacional Autónoma de México, 2004.