Previous |  Up |  Next

Article

Keywords:
almost $\mathcal S$-structure; Tanaka–Webster connection; Cartan connection; CR manifold
Summary:
We prove that a CR-integrable almost $\mathcal S$-manifold admits a canonical linear connection, which is a natural generalization of the Tanaka–Webster connection of a pseudo-hermitian structure on a strongly pseudoconvex CR manifold of hypersurface type. Hence a CR-integrable almost $\mathcal S$-structure on a manifold is canonically interpreted as a reductive Cartan geometry, which is torsion free if and only if the almost $\mathcal S$-structure is normal. Contrary to the CR-codimension one case, we exhibit examples of non normal almost $\mathcal S$-manifolds with higher CR-codimension, whose Tanaka–Webster curvature vanishes.
References:
[1] Alekseevsky D. V., Michor P. W.: Differential Geometry of Cartan connections. Publ. Math. Debrecen 47 (1995), 349–375. MR 1362298 | Zbl 0857.53011
[2] Blair D. E.: Contact manifolds in Riemannian Geometry. Lecture Notes in Math. 509, 1976, Springer–Verlag. MR 0467588 | Zbl 0319.53026
[3] Blair D. E.: Geometry of manifolds with structural group ${\mathcal{U}}(n)\times {\mathcal{O}}(s)$. J. Differential Geom. 4 (1970), 155–167. MR 0267501
[4] Duggal K. L., Ianus S., Pastore A. M.: Maps interchanging $f$-structures and their harmonicity. Acta Appl. Math. 67 (2001), 91–115. MR 1847885 | Zbl 1030.53048
[5] Kobayashi S., Nomizu K.: Foundations of Differential Geometry, Vol. I. Interscience, New-York, 1963. MR 0152974
[6] Kobayashi S., Nomizu K.: Foundations of Differential Geometry, Vol. II. Interscience, New-York, 1969. MR 0238225 | Zbl 0175.48504
[7] Lotta A.: Cartan connections on $CR$ manifolds. PhD Thesis, University of Pisa, 2000. Zbl 1053.32507
[8] Mizner R. I.: Almost CR structures, $f$-structures, almost product structures and associated connections. Rocky Mountain J. Math. 23, no. 4 (1993), 1337–1359. MR 1256452 | Zbl 0806.53030
[9] Sharpe R. W.: Differential geometry. Cartan’s generalization of Klein’s Erlangen program. Graduate Texts in Mathematics 166, Springer-Verlag, New York, 1997. MR 1453120 | Zbl 0876.53001
[10] Tanaka N.: On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections. Japan. J. Math. 20 (1976), 131–190. MR 0589931 | Zbl 0346.32010
[11] Tanno S.: Variational problems on contact Riemannian manifolds. Trans. Amer. Math. Soc., Vol. 314 (1989), 349–379. MR 1000553 | Zbl 0677.53043
[12] Tanno S.: The automorphism groups of almost contact Riemannian manifolds. Tohoku Math. J. 21 (1969), 21–38. MR 0242094 | Zbl 0188.26705
[13] Urakawa H.: Yang-Mills connections over compact strongly pseudoconvex CR manifolds. Math. Z. 216 (1994), 541–573. MR 1288045 | Zbl 0815.32008
[14] Webster S. M.: Pseudo-hermitian structures on a real hypersurface. J. Differential Geom. 13 (1978), 25–41. MR 0520599 | Zbl 0379.53016
[15] Yano K.: On a structure defined by a tensor field $f$ of type $(1,1)$ satisfying $f^3+f=0$. Tensor (N.S.) 14 (1963), 99–109. MR 0159296
Partner of
EuDML logo