Article
Keywords:
valuation monoids; Prüfer domains
Summary:
It is well known that an integral domain is a valuation domain if and only if it possesses only one finitary ideal system (Lorenzen $r$-system of finite character). We prove an analogous result for root-closed (cancellative) monoids and apply it to give several new characterizations of Prüfer (multiplication) monoids and integral domains.
References:
[1] Aubert K. E.:
Some characterizations of valuation rings. Duke Math. J. 21 (1954), 517–525.
MR 0062727
[2] Garcia J. M., Jaros P., Santos E.:
Prüfer $*$-multiplication domains and torsion theories. Comm. Algebra 27 (1999), 1275–1295.
MR 1669156
[4] Halter-Koch F.,:
Construction of ideal systems having nice noetherian properties. Commutative Rings in a Non-Noetherian Setting (S. T. Chapman and S. Glaz, eds.), Kluwer 2000, 271–285.
MR 1858166
[5] Halter-Koch F.:
Characterization of Prüfer multiplication monoids and domains by means of spectral module systems. Monatsh. Math. 139 (2003), 19–31.
MR 1981115 |
Zbl 1058.20049
[6] Halter-Koch F.:
Valuation Monoids, Defining Systems and Approximation Theorems. Semigroup Forum 55 (1997), 33–56.
MR 1446657 |
Zbl 0880.20047