Previous |  Up |  Next

Article

Keywords:
Lie ideals; prime rings; Jordan left derivations; left derivations; torsion free rings
Summary:
Let $R$ be a 2-torsion free prime ring and let $U$ be a Lie ideal of $R$ such that $u^{2} \in U$ for all $u \in U$. In the present paper it is shown that if $d$ is an additive mappings of $R$ into itself satisfying $d(u^{2})=2ud(u)$ for all $u \in U$, then $d(uv)=ud(v)+vd(u)$ for all $u,v \in U$.
References:
[1] Awtar R.: Lie ideals and Jordan derivations of prime rings. Proc. Amer. Math. Soc. 90 (1984), 9–14. MR 0722405 | Zbl 0528.16020
[2] Bergen J., Herstein I. N., Ker J. W.: Lie ideals and derivations of prime rings . J. Algebra 71 (1981), 259–267. MR 0627439
[3] Bresar M.: Jordan derivations on semiprime rings. Proc. Amer. Math. Soc. 104 (1988), 1003–1006. MR 0929422 | Zbl 0691.16039
[4] Bresar M., Vukman J.: Jordan derivations of prime rings. Bull. Aust. Math. Soc. 37 (1988), 321–322. MR 0943433
[5] Bresar M., Vukman J.: On left derivations and related mappings. Proc. Amer. Math. Soc. 110 (1990), 7–16. MR 1028284 | Zbl 0703.16020
[6] Deng Q.: On Jordan left derivations. Math. J. Okayama Univ. 34 (1992), 145–147. MR 1272614 | Zbl 0813.16021
[7] Herstein I. N.: Jordan derivations of prime rings. Proc. Amer. Math. Soc. 8 (1957), 1104–1110. MR 0095864
[8] Herstein I. N.: Topics in ring theory. Univ. of Chcago Press, Chicago 1969. MR 0271135 | Zbl 0232.16001
[9] Kill-Wong Jun, Byung-Do Kim: A note on Jordan left derivations. Bull. Korean Math. Soc. 33 (1996) No. 2, 221–228. MR 1405475
[10] Posner E. C.: Derivations in prime rings. Proc. Amer. Math. Soc. 8 (1957), 1093–1100. MR 0095863
[11] Vukman J.: Jordan left derivations on semiprime rings. Math. J. Okayama Univ. (to appear). MR 1680747 | Zbl 0937.16044
Partner of
EuDML logo