Article
Keywords:
Lie ideals; prime rings; Jordan left derivations; left derivations; torsion free rings
Summary:
Let $R$ be a 2-torsion free prime ring and let $U$ be a Lie ideal of $R$ such that $u^{2} \in U$ for all $u \in U$. In the present paper it is shown that if $d$ is an additive mappings of $R$ into itself satisfying $d(u^{2})=2ud(u)$ for all $u \in U$, then $d(uv)=ud(v)+vd(u)$ for all $u,v \in U$.
References:
[1] Awtar R.:
Lie ideals and Jordan derivations of prime rings. Proc. Amer. Math. Soc. 90 (1984), 9–14.
MR 0722405 |
Zbl 0528.16020
[2] Bergen J., Herstein I. N., Ker J. W.:
Lie ideals and derivations of prime rings . J. Algebra 71 (1981), 259–267.
MR 0627439
[3] Bresar M.:
Jordan derivations on semiprime rings. Proc. Amer. Math. Soc. 104 (1988), 1003–1006.
MR 0929422 |
Zbl 0691.16039
[4] Bresar M., Vukman J.:
Jordan derivations of prime rings. Bull. Aust. Math. Soc. 37 (1988), 321–322.
MR 0943433
[5] Bresar M., Vukman J.:
On left derivations and related mappings. Proc. Amer. Math. Soc. 110 (1990), 7–16.
MR 1028284 |
Zbl 0703.16020
[7] Herstein I. N.:
Jordan derivations of prime rings. Proc. Amer. Math. Soc. 8 (1957), 1104–1110.
MR 0095864
[9] Kill-Wong Jun, Byung-Do Kim:
A note on Jordan left derivations. Bull. Korean Math. Soc. 33 (1996) No. 2, 221–228.
MR 1405475
[10] Posner E. C.:
Derivations in prime rings. Proc. Amer. Math. Soc. 8 (1957), 1093–1100.
MR 0095863
[11] Vukman J.:
Jordan left derivations on semiprime rings. Math. J. Okayama Univ. (to appear).
MR 1680747 |
Zbl 0937.16044